loss.py 70.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from functools import partial, reduce
H
huangjun12 已提交
17
import paddle
18
from paddle.utils import deprecated
19 20 21
from . import nn
from .layer_function_generator import templatedoc
from ..layer_helper import LayerHelper
22 23 24 25 26 27 28
from ..framework import (
    Variable,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from .. import core
30
from ..data_feeder import check_variable_and_dtype, check_type
31
from ..param_attr import ParamAttr
S
ShenLiang 已提交
32 33
from ..initializer import NumpyArrayInitializer, Constant
from .. import core
34
import warnings
35
from paddle import _C_ops, _legacy_C_ops
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

__all__ = [
    'center_loss',
    'bpr_loss',
    'cross_entropy',
    'square_error_cost',
    'edit_distance',
    'warpctc',
    'nce',
    'hsigmoid',
    'sampled_softmax_with_cross_entropy',
    'softmax_with_cross_entropy',
    'rank_loss',
    'margin_rank_loss',
    'sigmoid_cross_entropy_with_logits',
    'teacher_student_sigmoid_loss',
    'huber_loss',
    'kldiv_loss',
    'npair_loss',
    'mse_loss',
]

kIgnoreIndex = -100


61 62 63
def center_loss(
    input, label, num_classes, alpha, param_attr, update_center=True
):
64
    r"""
65 66
    :api_attr: Static Graph

67
    **Center loss Cost layer**
68

69
    This OP accepts input (deep features,the output of the last hidden layer)
70 71
    and target label and return the center loss cost. The average of the
    distances of each sample in the mini-batch from the center of the
72
    corresponding category is calculated as the center loss.
73

74
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
75

76 77 78 79 80 81 82 83 84 85
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M]. Its dtype should be float32 or float64.
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size. Its dtype should be int32.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
86
        param_attr (ParamAttr): Attribute initializer of centers.
87 88 89
        update_center (bool): whether to update value of center.

    Returns:
90
        Variable: 2-D tensor with shape [N * 1]
91 92 93 94

    Examples:
        .. code-block:: python

95
          import paddle.fluid as fluid
96 97
          import paddle
          paddle.enable_static()
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

          input = fluid.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
113 114 115
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'center_loss'
    )
116 117
    check_variable_and_dtype(label, 'label', ['int32', 'int64'], 'center_loss')

118
    centers_shape = [num_classes, input.shape[1]]
119 120 121
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype
    )
122 123 124 125
    centers_param.stop_gradient = True

    if isinstance(alpha, Variable):
        alpha_param = alpha
126 127 128
        check_variable_and_dtype(
            alpha, 'alpha', ['float32', 'float64'], 'center_loss'
        )
129 130 131 132 133 134 135 136 137
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
138 139
            initializer=Constant(alpha),
        )
140 141 142

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param],
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param],
        },
        attrs={'cluster_num': num_classes, 'need_update': update_center},
    )
158 159 160 161
    return loss


def bpr_loss(input, label, name=None):
162
    r"""
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    **Bayesian Personalized Ranking Loss Operator**

    This operator belongs to pairwise ranking loss. Label is the desired item.
    The loss at a given point in one session is defined as:

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>.

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of positive classes and negative classes
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
190 191 192
          import paddle

          paddle.enable_static()
193 194 195 196 197 198 199 200 201 202

          neg_size = 10
          label = fluid.data(
                    name="label", shape=[3, 1], dtype="int64")
          predict = fluid.data(
                    name="predict", shape=[3, neg_size + 1], dtype="float32")
          cost = fluid.layers.bpr_loss(input=predict, label=label)
    """
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
203 204 205 206 207 208 209 210
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'bpr_loss'
    )
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input], 'Label': [label]},
        outputs={'Y': [out]},
    )
211 212 213 214
    return out


def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
215
    r"""
216
    :alias_main: paddle.nn.functional.cross_entropy
217 218
        :alias: paddle.nn.functional.cross_entropy,paddle.nn.functional.loss.cross_entropy
        :old_api: paddle.fluid.layers.cross_entropy
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    This operator computes the cross entropy between input and label. It
    supports both hard-label and and soft-label cross entropy computation.

    1. Hard-label cross entropy: if soft_label=False, :math:`label[i_1, i_2, ..., i_k]`
       is the hard label of each sample.

        .. math::

           output[i_1, i_2, ..., i_k]=-log(input[i_1, i_2, ..., i_k, j]), label[i_1, i_2, ..., i_k] = j, j != ignore\_index

    2. Soft-label cross entropy: if soft_label=True,  :math:`label[i_1, i_2, ..., i_k, j]`
       is the soft label of each sample corresponding to the j-th class.

        .. math::

           output[i_1, i_2, ..., i_k]= -\sum_{j}label[i_1,i_2,...,i_k,j]*log(input[i_1, i_2, ..., i_k,j])

    Args:
        input (Variable): a multidimensional Tensor with shape
                :math:`[N_1, N_2, ..., N_k, D]`, where the last dimension D is
                the class number. The data type should be float32 or float64.
        label (Variable): label value corresponding to input. If
                soft_label=False, the dimension of label should be :math:`[N_1, N_2, ..., N_k]`
                or :math:`[N_1, N_2, ..., N_k, 1]` , and its data type should be int64,
                and the value must be inside [0, D). If soft_label=True, the shape,
                data type of label should be the same with input, and the sum of
                soft label value of each sample should be 1.
        soft_label (bool): indicate whether label is soft. Default False, meaning that
                the label is hard. If soft_label=True, the label is soft.
        ignore_index (int): specify an ignorable label value. The ignored label would be
                omitted when computing. If it is a negative integer, no label would
                be ignored. Only valid when soft_label=False. Default -100.

    Returns:
         A Variable holding Tensor representing the cross entropy, whose data type is the same with input.
         If soft_label=False, the shape of output is the same with label.
         If soft_label=True, the shape of output is :math:`[N_1, N_2, ..., N_k, 1]` .

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            class_num = 7
            x = fluid.data(name='x', shape=[None, 3, 10], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            predict = fluid.layers.fc(input=x, size=class_num, act='softmax')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
    """
268 269 270
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)

J
Jiabin Yang 已提交
271
    if _non_static_mode():
272 273 274
        return _legacy_C_ops.cross_entropy(
            input, label, "soft_label", soft_label, "ignore_index", ignore_index
        )
275

276 277 278
    inputs = {'X': [input], 'Label': [label]}
    attrs = {"soft_label": soft_label, "ignore_index": ignore_index}

279 280 281
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cross_entropy'
    )
282 283
    helper = LayerHelper('cross_entropy', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
284 285 286
    helper.append_op(
        type='cross_entropy', inputs=inputs, outputs={'Y': [out]}, attrs=attrs
    )
287 288 289 290
    return out


def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
J
Jiabin Yang 已提交
291
    if _non_static_mode():
292 293 294
        loss, _, _ = _legacy_C_ops.cross_entropy2(
            input, label, 'ignore_index', ignore_index
        )
295
        return loss
296

297 298
    inputs = {'X': [input], 'Label': [label]}
    attrs = {'ignore_index': ignore_index}
299 300 301
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cross_entropy2'
    )
302 303 304 305
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
306 307 308 309 310 311
    helper.append_op(
        type='cross_entropy2',
        inputs=inputs,
        outputs={'Y': [out], 'MatchX': [match_x], 'XShape': [xshape]},
        attrs=attrs,
    )
312 313 314 315
    return out


def square_error_cost(input, label):
316
    r"""
317

318
    Accept input predictions and target label and returns the
319 320 321 322 323 324 325 326 327
    squared error cost.

    For predictions label, and target label, the equation is:

    .. math::

        Out = (input - label)^2

    Parameters:
328 329
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.
330 331

    Returns:
332
        Tensor, The tensor storing the element-wise squared
333
        error difference between input and label.
334 335 336 337 338

    Examples:

        .. code-block:: python

339 340 341 342
            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.nn.functional.square_error_cost(input, label)
B
Bai Yifan 已提交
343
            print(output)
344 345
            # [0.01, 0.01]

346
    """
347
    return paddle.nn.functional.square_error_cost(input, label)
348 349


350 351 352 353 354 355 356 357
def edit_distance(
    input,
    label,
    normalized=True,
    ignored_tokens=None,
    input_length=None,
    label_length=None,
):
358
    """
R
ruri 已提交
359 360 361 362
    This op computes the edit distances, also called Levenshtein distance, between a batch of
    hypothesis strings and their references. It measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into another.
    The operations include insertion, deletion, and substitution.
363 364

    For example, given hypothesis string A = "kitten" and reference
R
ruri 已提交
365
    B = "sitting", A will be transformed into B
366 367 368 369
    at least after two substitutions and one insertion:

    "kitten" -> "sitten" -> "sittin" -> "sitting"

R
ruri 已提交
370
    So the edit distance between A and B is 3.
371

N
Noel 已提交
372
    The input is a Tensor, the input_length and label_length should be supported.
R
ruri 已提交
373 374 375 376 377 378

    The `batch_size` of labels should be same as `input`.

    The output include the edit distance value between every pair of input and related label, and the number of sequence.
    If Attr(normalized) is true,
    the edit distance value will be divided by the length of label.
379 380

    Parameters:
N
Noel 已提交
381 382
        input(Tensor): The input tensor, its rank should be equal to 2 and its data type should be int64.
        label(Tensor): The label tensor, its rank should be equal to 2 and its data type should be int64.
R
ruri 已提交
383 384
        normalized(bool, default True): Indicated whether to normalize the edit distance.
        ignored_tokens(list<int>, default None): Tokens that will be removed before
385
                                     calculating edit distance.
N
Noel 已提交
386 387
        input_length(Tensor): The length for each sequence in `input` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
        label_length(Tensor): The length for each sequence in `label` if it's of Tensor type, it should have shape `(batch_size, )` and its data type should be int64.
R
ruri 已提交
388 389
        NOTE: To be avoid unexpected result, the value of every elements in input_length and label_length should be equal to the value of the second dimension of input and label. For example, The input: [[1,2,3,4],[5,6,7,8],[9,10,11,12]], the shape of input is [3,4] and the input_length should be [4,4,4]
        NOTE: This Api is different from fluid.metrics.EditDistance
390 391

    Returns:
392
        Tuple:
393

N
Noel 已提交
394 395
        distance(Tensor): edit distance result, its data type is float32, and its shape is (batch_size, 1).
        sequence_num(Tensor): sequence number, its data type is float32, and its shape is (1,).
396 397 398

    Examples:
        .. code-block:: python
R
ruri 已提交
399

N
Noel 已提交
400 401
            import paddle
            import paddle.nn.functional as F
R
ruri 已提交
402

N
Noel 已提交
403 404 405 406
            input = paddle.to_tensor([[1,2,3],[4,5,6],[4,4,4],[1,1,1]], dtype='int64')
            label = paddle.to_tensor([[1,3,4,1],[4,5,8,1],[7,7,7,1],[1,1,1,1]], dtype='int64')
            input_len = paddle.to_tensor([3,3,3,3], dtype='int64')
            label_len = paddle.to_tensor([4,4,4,4], dtype='int64')
R
ruri 已提交
407

N
Noel 已提交
408
            distance, sequence_num = F.loss.edit_distance(input=input, label=label, input_length=input_len, label_length=label_len, normalized=False)
R
ruri 已提交
409

N
Noel 已提交
410
            # print(distance)
R
ruri 已提交
411 412 413 414 415 416 417 418 419 420
            # [[3.]
            #  [2.]
            #  [4.]
            #  [1.]]
            # if set normalized to True
            # [[0.75]
            #  [0.5 ]
            #  [1.  ]
            #  [0.25]
            #
N
Noel 已提交
421
            # print(sequence_num)
R
ruri 已提交
422
            # [4]
423 424

    """
425 426 427
    return paddle.nn.functional.loss.edit_distance(
        input, label, normalized, ignored_tokens, input_length, label_length
    )
428 429


430 431 432 433 434 435 436 437
def warpctc(
    input,
    label,
    blank=0,
    norm_by_times=False,
    input_length=None,
    label_length=None,
):
438 439 440 441 442
    """
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation is
T
tianshuo78520a 已提交
443
    interated to the Warp-CTC library to normalize values for each row of the
444 445 446 447 448
    input tensor.

    Args:
       input (Variable): The unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
449
         information. When it is a 2-D LodTensor, its shape is
450 451
         `[Lp, num_classes + 1]`, where `Lp` is the sum of all input
         sequences' length and `num_classes` is the true number of classes.
452
         (not including the blank label). When it is a 3-D Tensor, its shape
453 454
         is `[max_logit_length, batch_size, num_classes + 1]`,
         where `max_logit_length` is the longest length of
455
         input logit sequence. The data type should be float32 or float64.
456
       label (Variable): The ground truth of variable-length sequence,
457
         which must be a 2-D Tensor with LoD information or a 3-D Tensor without
458 459 460
         LoD information, needs to be consistent with the coressponding input.
         When it is a 2-D LoDTensor, its shape is `[Lg, 1]`, where `Lg` is the sum
         of all labels' length. When it is a 3-D Tensor, its shape is
461 462
         `[batch_size, max_label_length]`, where `max_label_length` is the longest
         length of label sequence. Data type must be int32.
463 464
       blank (int, default 0): The blank label index of Connectionist
         Temporal Classification (CTC) loss, which is in the
465
         half-opened interval `[0, num_classes + 1)`. The data type must be int32.
466 467 468
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
T
tianshuo78520a 已提交
469
         followed by a mean_op.
470
       input_length(Variable): The length for each input sequence if it is
471 472 473 474 475 476
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.

    Returns:
        Variable: The Connectionist Temporal Classification (CTC) loss,
477
        which is a 2-D Tensor with the shape `[batch_size, 1]`.
478 479 480 481 482 483 484
        The date type is the same as input.

    Examples:

        .. code-block:: python

            # using LoDTensor
485
            import paddle
486 487
            import paddle.fluid as fluid
            import numpy as np
488 489 490 491 492 493 494 495

            # lengths of logit sequences
            seq_lens = [2,6]
            # lengths of label sequences
            label_lens = [2,3]
            # class num
            class_num = 5

496
            paddle.enable_static()
497 498
            logits = fluid.data(name='logits',shape=[None, class_num+1],
                                 dtype='float32',lod_level=1)
499
            label = fluid.data(name='label', shape=[None, 1],
500 501
                               dtype='int32', lod_level=1)
            cost = fluid.layers.warpctc(input=logits, label=label)
502
            place = fluid.CPUPlace()
503
            x = fluid.create_lod_tensor(
504
                     np.random.rand(np.sum(seq_lens), class_num+1).astype("float32"),
505 506
                     [seq_lens], place)
            y = fluid.create_lod_tensor(
507
                     np.random.randint(0, class_num, [np.sum(label_lens), 1]).astype("int32"),
508
                     [label_lens], place)
509
            exe = fluid.Executor(place)
510 511 512 513
            output= exe.run(fluid.default_main_program(),
                            feed={"logits": x,"label": y},
                            fetch_list=[cost.name])
            print(output)
514 515 516 517

        .. code-block:: python

            # using Tensor
518
            import paddle
519 520
            import paddle.fluid as fluid
            import numpy as np
521

522 523
            # length of the longest logit sequence
            max_seq_length = 5
524 525
            #length of the longest label sequence
            max_label_length = 3
526
            # number of logit sequences
527 528 529
            batch_size = 16
            # class num
            class_num = 5
530
            paddle.enable_static()
531 532 533
            logits = fluid.data(name='logits',
                           shape=[max_seq_length, batch_size, class_num+1],
                           dtype='float32')
534
            logits_length = fluid.data(name='logits_length', shape=[None],
535 536 537 538 539
                             dtype='int64')
            label = fluid.data(name='label', shape=[batch_size, max_label_length],
                           dtype='int32')
            label_length = fluid.data(name='labels_length', shape=[None],
                             dtype='int64')
540
            cost = fluid.layers.warpctc(input=logits, label=label,
541 542
                            input_length=logits_length,
                            label_length=label_length)
543
            place = fluid.CPUPlace()
544 545
            x = np.random.rand(max_seq_length, batch_size, class_num+1).astype("float32")
            y = np.random.randint(0, class_num, [batch_size, max_label_length]).astype("int32")
546
            exe = fluid.Executor(place)
547 548
            output= exe.run(fluid.default_main_program(),
                            feed={"logits": x,
549
                                  "label": y,
550 551
                                  "logits_length": np.array([max_seq_length]*batch_size).astype("int64"),
                                  "labels_length": np.array([max_label_length]*batch_size).astype("int64")},
552 553 554
                                  fetch_list=[cost.name])
            print(output)
    """
Z
Zhong Hui 已提交
555 556 557 558 559
    if in_dygraph_mode():
        if input_length is None or label_length is None:
            raise ValueError(
                "input_length and label_length must not be None in dygraph mode!"
            )
560 561 562
        loss_out = _C_ops.warpctc(
            input, label, input_length, label_length, blank, norm_by_times
        )
Z
Zhong Hui 已提交
563
        return loss_out
J
Jiabin Yang 已提交
564
    if _non_static_mode():
565 566 567 568
        if input_length is None or label_length is None:
            raise ValueError(
                "input_length and label_length must not be None in dygraph mode!"
            )
569
        grad, loss_out = _legacy_C_ops.warpctc(
H
Hui Zhang 已提交
570 571 572 573 574 575 576
            input,
            label,
            input_length,
            label_length,
            'blank',
            blank,
            'norm_by_times',
577 578
            norm_by_times,
        )
579
        return loss_out
580
    helper = LayerHelper('warpctc', **locals())
581
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], "warpctc")
582
    check_variable_and_dtype(label, 'label', ['int32'], "warpctc")
583
    this_inputs = {'Logits': [input], 'Label': [label]}
584
    if input_length is not None and label_length is not None:
585 586 587 588 589 590
        check_variable_and_dtype(
            input_length, 'LogitsLength', ['int64'], "warpctc"
        )
        check_variable_and_dtype(
            label_length, 'LabelLength', ['int64'], "warpctc"
        )
591 592 593 594 595 596
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)

597 598 599 600 601 602 603 604 605
    helper.append_op(
        type='warpctc',
        inputs=this_inputs,
        outputs={'WarpCTCGrad': [grad_out], 'Loss': [loss_out]},
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        },
    )
606 607 608 609 610 611
    return loss_out


# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
612
@static_only
613
@templatedoc(op_type="nce")
614 615 616 617 618 619 620 621 622 623 624 625 626 627
def nce(
    input,
    label,
    num_total_classes,
    sample_weight=None,
    param_attr=None,
    bias_attr=None,
    num_neg_samples=None,
    name=None,
    sampler="uniform",
    custom_dist=None,
    seed=0,
    is_sparse=False,
):
628
    """
629 630
    :api_attr: Static Graph

631 632 633
    ${comment}

    Args:
634
        input (Tensor): Input tensor, 2-D tensor with shape [batch_size, dim],
635
            and data type is float32 or float64.
636
        label (Tensor): Input label, 2-D tensor with shape [batch_size, num_true_class],
637 638
            and data type is int64.
        num_total_classes (int):${num_total_classes_comment}.
639
        sample_weight (Tensor|None): A Tensor of shape [batch_size, 1]
640 641
            storing a weight for each sample. The default weight for each
            sample is 1.0.
642 643
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
644
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
645 646
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
647 648
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        num_neg_samples (int): ${num_neg_samples_comment}.
649
        name(str|None): For detailed information, please refer to
650
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
T
tianshuo78520a 已提交
651
        sampler (str, optional): The sampler used to sample class from negative classes.
652 653 654 655
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
        custom_dist (nd.array|None): A numpy ndarray with size=num_total_classes.
                       It is used when sampler is set to 'custom_dist'.
T
tianshuo78520a 已提交
656
                       custom_dist[i] is the probability of i-th class to be sampled.
657 658
                       default: None.
        seed (int, optional): The seed used in sampler. Default 0, means no random seed.
659
        is_sparse(bool, optional): The flag indicating whether to use sparse update,
660 661 662
            the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default False.

    Returns:
663
        Tensor: The output nce loss.
664 665 666 667 668

    Examples:
        .. code-block:: python


669
            import paddle
670 671
            import numpy as np

672 673
            paddle.enable_static()

674 675
            window_size = 5
            words = []
676
            for i in range(window_size):
677
                words.append(paddle.static.data(
678 679 680 681 682 683
                    name='word_{0}'.format(i), shape=[-1, 1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
684
            for i in range(window_size):
685 686 687
                if i == label_word:
                    continue

688 689
                emb = paddle.static.nn.embedding(input=words[i], size=[dict_size, 32],
                                    param_attr='embed', is_sparse=True)
690 691
                embs.append(emb)

692 693 694 695
            embs = paddle.concat(x=embs, axis=1)
            loss = paddle.static.nn.nce(input=embs, label=words[label_word],
                        num_total_classes=dict_size, param_attr='nce.w_0',
                        bias_attr='nce.b_0')
696

697 698
            #or use custom distribution
            dist = np.array([0.05,0.5,0.1,0.3,0.05])
699
            loss = paddle.static.nn.nce(input=embs, label=words[label_word],
700 701 702 703 704
                    num_total_classes=5, param_attr='nce.w_1',
                    bias_attr='nce.b_1',
                    num_neg_samples=3,
                    sampler="custom_dist",
                    custom_dist=dist)
705 706
    """
    helper = LayerHelper('nce', **locals())
707 708
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'nce')
    check_variable_and_dtype(label, 'label', ['int64'], 'nce')
709 710 711

    dim = input.shape[1]
    num_true_class = label.shape[1]
712 713 714 715 716 717
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype,
    )
718 719
    inputs = {}
    if helper.bias_attr:
720 721 722 723 724 725
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype,
        )
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        inputs['Bias'] = b
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)

    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None

        custom_dist_len = num_total_classes
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 0:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 0:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 0:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 0:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
790 791
                default_initializer=NumpyArrayInitializer(numpy_array),
            )
792 793 794 795
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
796 797
            np.array(custom_dist).astype('float32')
        )
798
        inputs['CustomDistAlias'] = _init_by_numpy_array(
799 800
            np.array(alias_).astype('int32')
        )
801
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
802 803
            np.array(alias_probs_).astype('float32')
        )
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler,
        'is_sparse': is_sparse,
824
        'remote_prefetch': remote_prefetch,
825 826
    }

827 828 829 830 831 832 833 834 835 836
    helper.append_op(
        type='nce',
        inputs=inputs,
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels,
        },
        attrs=attrs,
    )
837 838 839
    return cost / (num_neg_samples + 1)


840 841 842 843 844 845 846 847 848 849 850 851
def hsigmoid(
    input,
    label,
    num_classes,
    param_attr=None,
    bias_attr=None,
    name=None,
    path_table=None,
    path_code=None,
    is_custom=False,
    is_sparse=False,
):
852
    """
853
    :api_attr: Static Graph
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        name (str, optional): Normally there is no need for user to set this property. For more information,
            please refer to :ref:`api_guide_Name`. Default: None.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, :attr:`path_table`,
            :attr:`path_code` and :attr:`num_classes` should be set, otherwise :attr:`num_classes` should
            be set. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[4, 3], value=0.9, dtype='float32')
            # x = [[0.9, 0.9, 0.9], [0.9, 0.9, 0.9], [0.9, 0.9, 0.9], [0.9, 0.9, 0.9]]
            y = fluid.layers.fill_constant(
                shape=[4, 1], value=1, dtype='int64')
            # y = [[1], [1], [1], [1]]
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=2, param_attr=fluid.initializer.Constant(
                value=0.05), bias_attr=fluid.initializer.Constant(value=.0))
            # out = [[0.62792355], [0.62792355], [0.62792355], [0.62792355]]
    """
924 925
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'hsigmoid')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid')
926 927 928 929 930 931 932 933

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    dim = input.shape[1]
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
        raise ValueError(
934 935
            "num_classes must not be less than 2 with default tree"
        )
936 937 938 939 940

    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

941 942 943
    if (not is_custom) and (
        (path_table is not None) or (path_code is not None)
    ):
944
        raise ValueError(
945 946
            "only num_classes should be passed without custom tree"
        )
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with custom tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with custom tree")
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with custom tree")
    else:
        pass

    weights = None
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
    if not is_custom:
963 964 965 966 967 968
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype,
        )
969
    else:
970 971 972 973 974 975
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes, dim],
            is_bias=False,
            dtype=input.dtype,
        )
976 977 978 979 980
    inputs = {
        "X": input,
        "W": weights,
        "PathTable": path_table,
        "PathCode": path_code,
981
        "Label": label,
982 983 984
    }
    if helper.bias_attr:
        if not is_custom:
985 986 987 988 989 990
            bias = helper.create_parameter(
                attr=helper.bias_attr,
                shape=[num_classes - 1, 1],
                is_bias=True,
                dtype=input.dtype,
            )
991 992
            inputs['Bias'] = bias
        else:
993 994 995 996 997 998
            bias = helper.create_parameter(
                attr=helper.bias_attr,
                shape=[num_classes, 1],
                is_bias=True,
                dtype=input.dtype,
            )
999
            inputs['Bias'] = bias
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs={"Out": out, "PreOut": pre_out, "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch,
        },
    )
1010 1011 1012
    return out


1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
def sampled_softmax_with_cross_entropy(
    logits,
    label,
    num_samples,
    num_true=1,
    remove_accidental_hits=True,
    use_customized_samples=False,
    customized_samples=None,
    customized_probabilities=None,
    seed=0,
):
1024 1025 1026
    """
    **Sampled Softmax With Cross Entropy Operator.**

1027
    Cross entropy loss with sampled softmax is used as the output layer for
1028
    larger output classes extensively. This operator samples a number of samples
1029 1030
    for all examples, and computes the softmax normalized values for each
    row of the sampled tensor, after which cross-entropy loss is computed.
1031 1032 1033 1034

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
1035

1036 1037 1038 1039
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
    log uniform distribution. True labels are concatenated with these samples to
    form T + S samples for each example. So, assume the shape of logits is
1040 1041
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a
    probability is calculated, which corresponds to the Q(y|x) in
1042
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
1043 1044 1045 1046

    Logits are sampled according to the sampled labels. Then if
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to
1047
    make its softmax result close to zero. Then sampled logits are subtracted by
1048
    logQ(y|x), these sampled logits and re-indexed labels are used to compute
1049 1050 1051 1052 1053
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
1054 1055 1056 1057
        label (Variable): The ground truth which is a 2-D tensor. Label is a
            Tensor<int64> with shape [N x T], where T is the number of true
            labels per example.
        num_samples (int): The number for each example, num_samples should be
1058 1059
            less than the number of class.
        num_true(int): The number of target classes per training example.
1060 1061 1062 1063
        remove_accidental_hits (bool): A flag indicating whether to remove
            accidental hits when sampling. If True and if a sample[i, j]
            accidentally hits true labels, then the corresponding
            sampled_logits[i, j] is minus by 1e20 to make its softmax result
1064 1065 1066 1067
            close to zero. Default is True.
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
            logits.
        customized_samples (Variable): User defined samples, which is a 2-D tensor
1068 1069 1070
            with shape [N, T + S]. S is the num_samples, and T is the number of true
            labels per example.
        customized_probabilities (Variable): User defined probabilities of samples,
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            a 2-D tensor which has the same shape with customized_samples.
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=input, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                      logits=fc, label=label, num_samples=25)
    """
1090
    if _non_static_mode():
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        sample_logits_attrs = (
            'use_customized_samples',
            use_customized_samples,
            'uniq',
            True,
            'remove_accidental_hits',
            remove_accidental_hits,
            'num_samples',
            num_samples,
            'seed',
            seed,
        )
        (
            _,
            _,
            _,
            _,
            sampled_logits_out,
            sampled_label_out,
        ) = _legacy_C_ops.sample_logits(logits, label, *sample_logits_attrs)
1111
        depth = num_samples + 1
1112 1113 1114
        sampled_softlabel_out = _legacy_C_ops.one_hot(
            sampled_label_out, 'depth', depth
        )
1115

1116 1117 1118 1119 1120 1121
        softmax_with_cross_entropy_attrs = (
            'soft_label',
            True,
            'numeric_stable_mode',
            False,
        )
1122

1123
        _, loss = _legacy_C_ops.softmax_with_cross_entropy(
1124 1125 1126 1127
            sampled_logits_out,
            sampled_softlabel_out,
            *softmax_with_cross_entropy_attrs
        )
1128 1129
        return loss / num_true

1130
    helper = LayerHelper('sample_logits', **locals())
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    samples = (
        customized_samples
        if use_customized_samples
        else helper.create_variable_for_type_inference(dtype='int64')
    )
    probabilities = (
        customized_probabilities
        if use_customized_samples
        else helper.create_variable_for_type_inference(dtype=logits.dtype)
    )
    sampled_logits = helper.create_variable_for_type_inference(
        dtype=logits.dtype
    )
1144 1145
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
    sampled_softlabel = helper.create_variable_for_type_inference(
1146 1147
        dtype=logits.dtype
    )
1148 1149 1150
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
            'Labels': label,
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities,
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
            'SampledLabels': sampled_label,
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim,
        },
        attrs={
            'use_customized_samples': use_customized_samples,
            'uniq': True,
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed,
        },
    )
1175 1176
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel},
    )

    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': sampled_logits, 'Label': sampled_softlabel},
        outputs={'Softmax': softmax, 'Loss': loss},
        attrs={
            'soft_label': True,
            'ignore_index': False,
            'numeric_stable_mode': False,
        },
    )
1194 1195 1196
    return loss / num_true


1197 1198 1199 1200 1201 1202 1203 1204 1205
def softmax_with_cross_entropy(
    logits,
    label,
    soft_label=False,
    ignore_index=kIgnoreIndex,
    numeric_stable_mode=True,
    return_softmax=False,
    axis=-1,
):
1206
    r"""
1207

1208 1209
    This operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
1210 1211 1212 1213 1214 1215
    to provide a more numerically stable gradient.

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.

1216 1217 1218
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators
    expects mutually exclusive hard labels, each sample in a batch is in exactly
    one class with a probability of 1.0. Each sample in the batch will have a
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    single label.

    The equation is as follows:

    1) Hard label (one-hot label, so every sample has exactly one class)

    .. math::

        loss_j =  -\\text{logits}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logits}_i)\\right), j = 1,..., K

    2) Soft label (each sample can have a distribution over all classes)

    .. math::

        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logits}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logits}_i)\\right)\\right), j = 1,...,K

    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated first by:

    .. math::

        max_j &= \\max_{i=0}^{K}{\\text{logits}_i}

        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logits_i - max_j)

        softmax_j &= \\exp(logits_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

    Args:
1251 1252
        logits (Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. The input tensor of unscaled log probabilities.
        label (Tensor): The ground truth  ``Tensor`` , data type is the same
1253 1254 1255
            as the ``logits`` . If :attr:`soft_label` is set to :attr:`True`,
            Label is a ``Tensor``  in the same shape with :attr:`logits`.
            If :attr:`soft_label` is set to :attr:`True`, Label is a ``Tensor``
1256
            in the same shape with :attr:`logits` expect shape in dimension :attr:`axis` as 1.
T
tianshuo78520a 已提交
1257
        soft_label (bool, optional): A flag to indicate whether to interpretant the given
1258 1259 1260
            labels as soft labels. Default False.
        ignore_index (int, optional): Specifies a target value that is ignored and does
                                      not contribute to the input gradient. Only valid
1261
                                      if :attr:`soft_label` is set to :attr:`False`.
1262 1263 1264
                                      Default: kIgnoreIndex(-100).
        numeric_stable_mode (bool, optional): A flag to indicate whether to use a more
                                              numerically stable algorithm. Only valid
1265 1266 1267
                                              when :attr:`soft_label` is :attr:`False`
                                              and GPU is used. When :attr:`soft_label`
                                              is :attr:`True` or CPU is used, the
1268 1269 1270 1271 1272
                                              algorithm is always numerically stable.
                                              Note that the speed may be slower when use
                                              stable algorithm. Default: True.
        return_softmax (bool, optional): A flag indicating whether to return the softmax
                                         along with the cross entropy loss. Default: False.
1273
        axis (int, optional): The index of dimension to perform softmax calculations. It
1274 1275 1276 1277
                              should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                              is the rank of input :attr:`logits`. Default: -1.

    Returns:
1278
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
1279 1280 1281 1282 1283 1284 1285 1286 1287
                                                    `return_softmax` is False, otherwise the tuple \
                                                    (loss, softmax), softmax is in the same shape \
                                                    with input logits and cross entropy loss is in \
                                                    the same shape with input logits except shape \
                                                    in dimension :attr:`axis` as 1.

    Examples:
        .. code-block:: python

1288 1289
            import paddle
            import numpy as np
1290

1291 1292 1293 1294 1295 1296 1297 1298
            data = np.random.rand(128).astype("float32")
            label = np.random.rand(1).astype("int64")
            data = paddle.to_tensor(data)
            label = paddle.to_tensor(label)
            linear = paddle.nn.Linear(128, 100)
            x = linear(data)
            out = paddle.nn.functional.softmax_with_cross_entropy(logits=x, label=label)
            print(out)
1299
    """
1300
    return paddle.nn.functional.loss.fluid_softmax_with_cross_entropy(
1301 1302 1303 1304 1305 1306 1307 1308
        logits,
        label,
        soft_label,
        ignore_index,
        numeric_stable_mode,
        return_softmax,
        axis,
    )
1309 1310


1311 1312 1313 1314 1315 1316 1317
def identity_loss(x, reduction="none"):
    r"""Marks a tensor as being part of the loss calculation for IPU.

    This operator is used to handle on the (final) loss of a model so that
    it is used as the start of backpropagation.

    When `reduction` is `none`, return raw `Out`.
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    When `reduction` is `mean`, return

    .. math::
        Out = MEAN(Out)

    When `reduction` is `sum`, return

    .. math::
        Out = SUM(Out)

    Parameters:
        x (Variable): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of
             additional dimensions. It's data type should be float32, float64 on CPU and float16, float32 on IPU.
        reduction(str|int, optional): Reduce the loss output. Supported string values are: 'sum', 'mean', 'none'
                            the corresponding int values are 0, 1, 2 respectively. The default value is "none".

    Returns:
        Variable: The loss ``Tensor`` with the specified reduction applied.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            import paddle
            paddle.enable_static()
            loss = fluid.data(name="loss", shape=[-1, 1], dtype="float32")
            out = paddle.incubate.identity_loss(loss, reduction=1)
    """
    if isinstance(reduction, str):
        reduction = {"sum": 0, "mean": 1, "none": 2}.get(reduction.lower())
        if reduction is None:
            raise Exception("Unsupported reduction type.")

    if _non_static_mode():
1354
        return _legacy_C_ops.identity_loss(x, "reduction", reduction)
1355 1356 1357 1358 1359 1360

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "identity_loss")
    attrs = {'reduction': reduction}
    helper = LayerHelper('identity_loss', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
1361 1362 1363
    helper.append_op(
        type="identity_loss", inputs={"X": x}, outputs={"Out": out}, attrs=attrs
    )
1364 1365 1366
    return out


1367
def rank_loss(label, left, right, name=None):
1368
    r"""
1369

1370 1371 1372
    This operator implements the sort loss layer in the RankNet model. RankNet is a pairwise ranking model
    with a training sample consisting of a pair of documents (A and B), The label (P)
    indicates whether A is ranked higher than B or not. Please refer to more details:
1373 1374 1375 1376
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_

    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
1377 1378
    for documents A and B and the value of label P. Rank loss layer takes batch inputs
    with size batch_size (batch_size >= 1), P = {0, 1} or {0, 0.5, 1},
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
    where 0.5 means that there is no information about the rank of the input pair.
    The following equation computes rank loss C_{i,j} from the inputs:

    .. math::
      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\
    .. math::
      o_{i,j} &=  o_i - o_j  \\\\
    .. math::
      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

    Parameters:
        label (Variable): 2-D ``Tensor`` with the shape of :math:`[batch,1]`, the data type is float32, batch indicates the size of the data. Indicats whether A ranked higher than B or not.
        left (Variable): 2-D ``Tensor`` with the shape of :math:`[batch,1]`, the data type is float32. RankNet's output score for doc A.
        right (Variable): 2-D ``Tensor`` with the shape of :math:`[batch,1]`, the data type is float32. RankNet's output score for doc B.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: ``Tensor`` indicating the output value of the sort loss layer, the data type is float32, and the return value's shape is :math:`[batch,1]` .

    Raises:
        ValueError: Any of label, left, and right is not a ``Variable`` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
1406 1407
            import paddle
            paddle.enable_static()
1408 1409 1410 1411 1412 1413 1414
            label = fluid.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.data(name="right", shape=[-1, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())
1415 1416 1417
    check_variable_and_dtype(label, 'label', ['float32'], "rank_loss")
    check_variable_and_dtype(left, 'left', ['float32'], "rank_loss")
    check_variable_and_dtype(right, 'right', ['float32'], "rank_loss")
1418 1419 1420

    out = helper.create_variable_for_type_inference("float32")

1421 1422 1423 1424 1425
    helper.append_op(
        type='rank_loss',
        inputs={"Label": label, "Left": left, "Right": right},
        outputs={'Out': out},
    )
1426 1427 1428 1429
    return out


def margin_rank_loss(label, left, right, margin=0.1, name=None):
1430
    r"""
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    Margin Ranking Loss Layer for ranking problem,
    which compares left score and right score passed in.
    The ranking loss can be defined as following equation:

    .. math::

        rank\_loss = max(0, -label * (left - right) + margin)

    Args:
       label (Variable): Indicates whether the left is ranked higher than the right or not.
           Data type is float32.
       left (Variable): Ranking score for left. Data type float32.
       right (Variable): Ranking score for right. Data type float32.
       margin (float): Indicates the given margin.
1445
       name(str|None): For detailed information, please refer to
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
       Variable: The ranking loss.

    Raises:
       ValueError: Any of label, left, and right is not a Variable.

    Examples:

        .. code-block:: python

           import paddle.fluid as fluid
           label = fluid.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.data(name="right", shape=[-1, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
    helper = LayerHelper('margin_rank_loss', **locals())
1465 1466 1467
    check_variable_and_dtype(label, 'label', ['float32'], 'margin_rank_loss')
    check_variable_and_dtype(label, 'left', ['float32'], 'margin_rank_loss')
    check_variable_and_dtype(label, 'right', ['float32'], 'margin_rank_loss')
1468 1469
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
1470 1471 1472 1473 1474 1475
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label, "X1": left, "X2": right},
        outputs={'Out': out, 'Activated': act},
        attrs={'margin': margin},
    )
1476 1477 1478 1479
    return out


@templatedoc()
1480 1481 1482
def sigmoid_cross_entropy_with_logits(
    x, label, ignore_index=kIgnoreIndex, name=None, normalize=False
):
1483
    """
1484

1485 1486 1487
    ${comment}

    Args:
N
Noel 已提交
1488
        x(Tensor): a 2-D tensor with shape N x D, where N is the batch size and
1489 1490 1491
                D is the number of classes. This input is a tensor of logits computed
                by the previous operator. Logits are unscaled log probabilities given
                as log(p/(1-p)) The data type should be float32 or float64.
N
Noel 已提交
1492
        label (Tensor): a 2-D tensor of the same type and shape as X.
1493
                This input is a tensor of probabalistic labels for each logit.
1494
        ignore_index(int): Specifies a target value that is ignored and
1495
                does not contribute to the input gradient.
1496 1497 1498 1499 1500 1501 1502
        name(str|None): The default value is None.  Normally there is
            no need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name`
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.

    Returns:
N
Noel 已提交
1503
        out(Tensor): ${out_comment}
1504 1505 1506 1507

    Examples:
        .. code-block:: python

N
Noel 已提交
1508 1509 1510 1511 1512

            import paddle

            input = paddle.rand(shape=[10], dtype='float32')
            label = paddle.rand(shape=[10], dtype='float32')
1513
            loss = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(input, label,
N
Noel 已提交
1514 1515
                                                            ignore_index=-1, normalize=True)
            print(loss)
1516
    """
H
hong 已提交
1517 1518

    if in_dygraph_mode():
1519 1520 1521 1522 1523 1524 1525 1526 1527
        return _C_ops.sigmoid_cross_entropy_with_logits(
            x, label, normalize, int(ignore_index)
        )
    check_variable_and_dtype(
        x,
        'input',
        ['float16', 'float32', 'float64'],
        'sigmoid_cross_entropy_with_logits',
    )
1528 1529 1530

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

1531
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1532

1533 1534 1535 1536 1537 1538
    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x, "Label": label},
        attrs={"ignore_index": ignore_index, 'normalize': normalize},
        outputs={"Out": out},
    )
1539 1540 1541
    return out


1542 1543 1544
def teacher_student_sigmoid_loss(
    input, label, soft_max_up_bound=15.0, soft_max_lower_bound=-15.0
):
1545
    """
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss. Z is click or not, z' is value of teacher loss, label = {-2, -1, [0, 2]}
    when z' is not exist, clk = 0 : label = -2; when z' is not exist, clk = 1 : label = -1;
    when z' is exist    , clk = 0 : label = 0 + z'; when z' is exist    , clk = 1 : label = 1 + z'

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
1571

1572
          import paddle.fluid as fluid
1573 1574
          import paddle
          paddle.enable_static()
1575 1576 1577 1578 1579 1580 1581 1582
          batch_size = 64
          label = fluid.data(
                    name="label", shape=[batch_size, 1], dtype="int64")
          similarity = fluid.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32")
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)

    """
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    check_variable_and_dtype(
        input,
        "input",
        ['float32', 'float64', 'int32', 'int64'],
        'teacher_student_sigmoid_loss',
    )
    check_variable_and_dtype(
        label,
        "label",
        ['float32', 'float64', 'int32', 'int64'],
        'teacher_student_sigmoid_loss',
    )
1595

1596 1597 1598 1599
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
1600
        inputs={'X': [input], 'Label': [label]},
1601
        outputs={'Y': [out]},
1602 1603 1604 1605 1606
        attrs={
            "soft_max_lower_bound": float(soft_max_lower_bound),
            "soft_max_up_bound": float(soft_max_up_bound),
        },
    )
1607 1608 1609 1610
    return out


def huber_loss(input, label, delta):
1611
    r"""
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    This operator computes the Huber loss between input and label.
    Huber loss is commonly used in regression tasks. Compared to square_error_cost, Huber loss is more robust and less sensitivity to outliers.

    When the absolute difference between input and label is greater than delta, the linear error is calculated:

    .. math::
            huber\_loss = delta * (label - input) - 0.5 * delta * delta

    When the absolute difference between input and label is greater than delta, the square error is calculated:

    .. math::
            huber\_loss = 0.5 * (label - input) * (label - input)


    Args:
1627 1628
        input (Variable): Predicted data, 2D-Tensor with the shape of [batch_size, 1]. The data type should be float32.
        label (Variable): Ground truth label, 2D-Tensor with the shape of [batch_size, 1]. The data type should be float32.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
        delta (float): The threshold for Huber loss, which is used to control the balance between the linear error and square error. The data type should be float32.

    Returns:
        Variable: The huber loss, a tensor with the same shape and data type as input.


    Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'
        input_data = np.array([[1.],[2.],[3.],[4.]]).astype(DATATYPE)
        label_data = np.array([[3.],[3.],[4.],[4.]]).astype(DATATYPE)

        x = fluid.data(name='input', shape=[None, 1], dtype=DATATYPE)
        y = fluid.data(name='label', shape=[None, 1], dtype=DATATYPE)
        loss = fluid.layers.huber_loss(input=x, label=y, delta=1.0)

        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        HuberLoss, = exe.run(feed={'input':input_data ,'label':label_data}, fetch_list=[loss.name])
        print(HuberLoss)  #[[1.5], [0.5], [0.5], [0. ]], dtype=float32
    """
1656
    if in_dygraph_mode():
1657
        out, residual = _C_ops.huber_loss(input, label, delta)
1658 1659
        return out

1660
    helper = LayerHelper('huber_loss', **locals())
1661 1662 1663 1664 1665 1666
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'huber_loss'
    )
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'huber_loss'
    )
1667
    residual = helper.create_variable_for_type_inference(
1668 1669
        dtype=helper.input_dtype()
    )
1670
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1671 1672 1673 1674 1675 1676
    helper.append_op(
        type='huber_loss',
        inputs={'X': input, 'Y': label},
        outputs={'Out': out, 'Residual': residual},
        attrs={'delta': delta},
    )
1677 1678 1679
    return out


1680
@deprecated(since="2.0.0", update_to="paddle.nn.functional.kl_div")
1681 1682 1683
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
1684

1685 1686 1687
    ${comment}

    Args:
N
Noel 已提交
1688 1689 1690
        x (Tensor): ${x_comment}
        target (Tensor): ${target_comment}
        reduction (Tensor): ${reduction_comment}
1691 1692 1693 1694 1695
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
N
Noel 已提交
1696
        Tensor: The KL divergence loss. The data type is same as input tensor
1697 1698 1699 1700

    Examples:
        .. code-block:: python

N
Noel 已提交
1701
            import paddle
1702
            import paddle.fluid as fluid
1703

N
Noel 已提交
1704 1705 1706 1707 1708 1709
            x = paddle.rand(shape=[3,4,2,2], dtype='float32')
            target = paddle.rand(shape=[3,4,2,2], dtype='float32')

            # 'batchmean' reduction, loss shape will be [1]
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            print(loss.shape) # shape=[1]
1710

1711
            # 'mean' reduction, loss shape will be [1]
N
Noel 已提交
1712 1713
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='mean')
            print(loss.shape) # shape=[1]
1714

1715
            # 'sum' reduction, loss shape will be [1]
N
Noel 已提交
1716 1717
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='sum')
            print(loss.shape) # shape=[1]
1718

1719
            # 'none' reduction, loss shape is same with X shape
N
Noel 已提交
1720 1721
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='none')
            print(loss.shape) # shape=[3, 4, 2, 2]
1722

1723 1724
    """
    helper = LayerHelper('kldiv_loss', **locals())
1725
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'kldiv_loss')
1726 1727 1728
    check_variable_and_dtype(
        target, 'target', ['float32', 'float64'], 'kldiv_loss'
    )
1729
    check_type(reduction, 'reduction', str, 'kldiv_loss')
1730
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
1731 1732 1733 1734 1735 1736
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x, 'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction},
    )
1737 1738 1739 1740 1741 1742 1743
    return loss


from .control_flow import equal


def npair_loss(anchor, positive, labels, l2_reg=0.002):
1744 1745
    """

1746 1747 1748
    Npair loss requires paired data. Npair loss has two parts: the first part is L2
    regularizer on the embedding vector; the second part is cross entropy loss which
    takes the similarity matrix of anchor and positive as logits.
1749

1750 1751
    For more information, please refer to:
    `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_
1752

1753
    Args:
1754
      anchor(Tensor): embedding vector for the anchor image. shape=[batch_size, embedding_dims],
1755
                        the data type is float32 or float64.
1756
      positive(Tensor): embedding vector for the positive image. shape=[batch_size, embedding_dims],
1757 1758 1759 1760
                        the data type is float32 or float64.
      labels(Tensor): 1-D tensor. shape=[batch_size], the data type is float32 or float64 or int64.
      l2_reg(float32): L2 regularization term on embedding vector, default: 0.002.

1761

1762 1763
    Returns:
      A Tensor representing the npair loss, the data type is the same as anchor, the shape is [1].
1764

1765 1766 1767
    Examples:

      .. code-block:: python
1768

1769
          import paddle
1770

1771
          DATATYPE = "float32"
1772

1773 1774 1775
          anchor = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          positive = paddle.rand(shape=(18, 6), dtype=DATATYPE)
          labels = paddle.rand(shape=(18,), dtype=DATATYPE)
1776

1777 1778
          npair_loss = paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg = 0.002)
          print(npair_loss)
1779

1780
    """
1781
    return paddle.nn.functional.npair_loss(anchor, positive, labels, l2_reg)
1782 1783 1784 1785


def mse_loss(input, label):
    """
1786

1787 1788 1789 1790 1791
    This op accepts input predications and target label and returns the mean square error.

    The loss can be described as:

    .. math::
1792

1793 1794
        Out = MEAN((input - label)^2)

1795
    Parameters:
1796 1797
        input (Tensor): Input tensor, the data type should be float32.
        label (Tensor): Label tensor, the data type should be float32.
1798 1799

    Returns:
1800
        Tensor: The tensor storing the mean square error difference of input and label.
1801

1802
    Return type: Tensor.
1803

1804 1805 1806
    Examples:
        .. code-block:: python

1807 1808 1809 1810 1811 1812
            import paddle
            input = paddle.to_tensor([1.1, 1.9])
            label = paddle.to_tensor([1.0, 2.0])
            output = paddle.fluid.layers.mse_loss(input, label)
            print(output.numpy())
            # [0.01]
1813
    """
1814 1815
    check_variable_and_dtype(input, "input", ['float32', 'float64'], 'mse_loss')
    check_variable_and_dtype(label, "label", ['float32', 'float64'], 'mse_loss')
1816
    return nn.reduce_mean(square_error_cost(input, label))