Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
3e962aec
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3e962aec
编写于
4月 27, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
4月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix kldiv_loss sample code diff. test=develop test=document_fix (#23660)
上级
077e5a0f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
20 addition
and
2 deletion
+20
-2
python/paddle/fluid/layers/loss.py
python/paddle/fluid/layers/loss.py
+20
-2
未找到文件。
python/paddle/fluid/layers/loss.py
浏览文件 @
3e962aec
...
...
@@ -1592,9 +1592,27 @@ def kldiv_loss(x, target, reduction='mean', name=None):
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None,4,2,2], dtype='float32')
# 'batchmean' reduction, loss shape will be [N]
x = fluid.data(name='x', shape=[None,4,2,2], dtype='float32') # shape=[-1, 4, 2, 2]
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean') # shape=[-1]
# 'mean' reduction, loss shape will be [1]
x = fluid.data(name='x', shape=[None,4,2,2], dtype='float32') # shape=[-1, 4, 2, 2]
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='mean') # shape=[1]
# 'sum' reduction, loss shape will be [1]
x = fluid.data(name='x', shape=[None,4,2,2], dtype='float32') # shape=[-1, 4, 2, 2]
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='sum') # shape=[1]
# 'none' reduction, loss shape is same with X shape
x = fluid.data(name='x', shape=[None,4,2,2], dtype='float32') # shape=[-1, 4, 2, 2]
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='none') # shape=[-1, 4, 2, 2]
"""
helper
=
LayerHelper
(
'kldiv_loss'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'kldiv_loss'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录