distributions.py 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from . import control_flow
from . import tensor
from . import nn
import math
import numpy as np
import warnings
21
import paddle
22

23 24 25 26 27 28
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
29

30
__all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
31 32


33
class Distribution:
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    """
    Distribution is the abstract base class for probability distributions.
    """

    def sample(self):
        """Sampling from the distribution."""
        raise NotImplementedError

    def entropy(self):
        """The entropy of the distribution."""
        raise NotImplementedError

    def kl_divergence(self, other):
        """The KL-divergence between self distributions and other."""
        raise NotImplementedError

    def log_prob(self, value):
        """Log probability density/mass function."""
        raise NotImplementedError

    def _validate_args(self, *args):
        """
        Argument validation for distribution args
        Args:
            value (float, list, numpy.ndarray, Variable)
        Raises
            ValueError: if one argument is Variable, all arguments should be Variable
        """
        is_variable = False
        is_number = False
        for arg in args:
            if isinstance(arg, tensor.Variable):
                is_variable = True
            else:
                is_number = True

        if is_variable and is_number:
            raise ValueError(
72 73
                'if one argument is Variable, all arguments should be Variable'
            )
74 75 76 77 78 79 80 81 82 83 84 85 86 87

        return is_variable

    def _to_variable(self, *args):
        """
        Argument convert args to Variable

        Args:
            value (float, list, numpy.ndarray, Variable)
        Returns:
            Variable of args.
        """
        numpy_args = []
        variable_args = []
88
        tmp = 0.0
89 90 91 92 93 94 95

        for arg in args:
            valid_arg = False
            for cls in [float, list, np.ndarray, tensor.Variable]:
                if isinstance(arg, cls):
                    valid_arg = True
                    break
96 97 98
            assert (
                valid_arg
            ), "type of input args must be float, list, numpy.ndarray or Variable."
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            if isinstance(arg, float):
                arg = np.zeros(1) + arg
            arg_np = np.array(arg)
            arg_dtype = arg_np.dtype
            if str(arg_dtype) not in ['float32']:
                warnings.warn(
                    "data type of argument only support float32, your argument will be convert to float32."
                )
                arg_np = arg_np.astype('float32')
            tmp = tmp + arg_np
            numpy_args.append(arg_np)

        dtype = tmp.dtype
        for arg in numpy_args:
            arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
            arg_variable = tensor.create_tensor(dtype=dtype)
            tensor.assign(arg_broadcasted, arg_variable)
            variable_args.append(arg_variable)

        return tuple(variable_args)


class Uniform(Distribution):
122
    r"""Uniform distribution with `low` and `high` parameters.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    Mathematical Details

    The probability density function (pdf) is,

    .. math::

        pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
    broadcasting (e.g., `high - low` is a valid operation).

    Args:
L
LielinJiang 已提交
146 147
        low(float|list|numpy.ndarray|Variable): The lower boundary of uniform distribution.The data type is float32
        high(float|list|numpy.ndarray|Variable): The higher boundary of uniform distribution.The data type is float32
148 149 150 151

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
152
          import numpy as np
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
          from paddle.fluid import layers
          from paddle.fluid.layers import Uniform

          # Without broadcasting, a single uniform distribution [3, 4]:
          u1 = Uniform(low=3.0, high=4.0)
          # 2 distributions [1, 3], [2, 4]
          u2 = Uniform(low=[1.0, 2.0],
                        high=[3.0, 4.0])
          # 4 distributions
          u3 = Uniform(low=[[1.0, 2.0],
                    [3.0, 4.0]],
               high=[[1.5, 2.5],
                     [3.5, 4.5]])

          # With broadcasting:
          u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

L
LielinJiang 已提交
170 171 172 173
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)
174

L
LielinJiang 已提交
175
          uniform = Uniform([0.], [2.])
176

L
LielinJiang 已提交
177 178
          sample = uniform.sample([2])
          # a random tensor created by uniform distribution with shape: [2, 1]
179
          entropy = uniform.entropy()
L
LielinJiang 已提交
180 181 182
          # [0.6931472] with shape: [1]
          lp = uniform.log_prob(value_tensor)
          # [-0.6931472] with shape: [1]
183 184 185
    """

    def __init__(self, low, high):
186 187 188 189 190 191
        check_type(
            low, 'low', (float, np.ndarray, tensor.Variable, list), 'Uniform'
        )
        check_type(
            high, 'high', (float, np.ndarray, tensor.Variable, list), 'Uniform'
        )
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        self.all_arg_is_float = False
        self.batch_size_unknown = False
        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
            self.low, self.high = self._to_variable(low, high)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
212
          Variable: A tensor with prepended dimensions shape.The data type is float32.
213 214

        """
215 216 217
        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

218 219 220 221
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
222 223
                self.low + self.high, batch_shape + shape, self.low.dtype, 0.0
            )
224
            uniform_random_tmp = nn.uniform_random_batch_size_like(
225 226 227 228 229 230
                zero_tmp, zero_tmp.shape, min=0.0, max=1.0, seed=seed
            )
            output = (
                uniform_random_tmp * (zero_tmp + self.high - self.low)
                + self.low
            )
231 232 233
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
234 235 236 237 238 239 240 241
            output = (
                nn.uniform_random(output_shape, seed=seed)
                * (
                    tensor.zeros(output_shape, dtype=self.low.dtype)
                    + (self.high - self.low)
                )
                + self.low
            )
242 243 244 245 246 247 248 249 250 251 252 253
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
254
          Variable: log probability.The data type is same with value.
255 256

        """
257 258 259
        check_variable_and_dtype(
            value, 'value', ['float32', 'float64'], 'log_prob'
        )
260

261 262 263 264 265 266 267 268 269 270
        lb_bool = control_flow.less_than(self.low, value)
        ub_bool = control_flow.less_than(value, self.high)
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return nn.log(lb * ub) - nn.log(self.high - self.low)

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
271
          Variable: Shannon entropy of uniform distribution.The data type is float32.
272 273 274 275 276 277

        """
        return nn.log(self.high - self.low)


class Normal(Distribution):
278
    r"""The Normal distribution with location `loc` and `scale` parameters.
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    Mathematical details

    The probability density function (pdf) is,

    .. math::

        pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2}  {\sigma^2} }

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
L
LielinJiang 已提交
299 300
        loc(float|list|numpy.ndarray|Variable): The mean of normal distribution.The data type is float32.
        scale(float|list|numpy.ndarray|Variable): The std of normal distribution.The data type is float32.
301 302 303

    Examples:
        .. code-block:: python
304

305
          import numpy as np
306 307 308 309 310 311 312
          from paddle.fluid import layers
          from paddle.fluid.layers import Normal

          # Define a single scalar Normal distribution.
          dist = Normal(loc=0., scale=3.)
          # Define a batch of two scalar valued Normals.
          # The first has mean 1 and standard deviation 11, the second 2 and 22.
L
LielinJiang 已提交
313
          dist = Normal(loc=[1., 2.], scale=[11., 22.])
314 315 316 317 318
          # Get 3 samples, returning a 3 x 2 tensor.
          dist.sample([3])

          # Define a batch of two scalar valued Normals.
          # Both have mean 1, but different standard deviations.
L
LielinJiang 已提交
319
          dist = Normal(loc=1., scale=[11., 22.])
320

L
LielinJiang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = layers.create_tensor(dtype="float32")
          layers.assign(value_npdata, value_tensor)

          normal_a = Normal([0.], [1.])
          normal_b = Normal([0.5], [2.])

          sample = normal_a.sample([2])
          # a random tensor created by normal distribution with shape: [2, 1]
          entropy = normal_a.entropy()
          # [1.4189385] with shape: [1]
          lp = normal_a.log_prob(value_tensor)
          # [-1.2389386] with shape: [1]
          kl = normal_a.kl_divergence(normal_b)
          # [0.34939718] with shape: [1]
337 338 339
    """

    def __init__(self, loc, scale):
340 341 342 343 344 345
        check_type(
            loc, 'loc', (float, np.ndarray, tensor.Variable, list), 'Normal'
        )
        check_type(
            scale, 'scale', (float, np.ndarray, tensor.Variable, list), 'Normal'
        )
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        self.batch_size_unknown = False
        self.all_arg_is_float = False
        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
            self.loc, self.scale = self._to_variable(loc, scale)

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
L
LielinJiang 已提交
366
          Variable: A tensor with prepended dimensions shape.The data type is float32.
367 368

        """
369 370 371 372

        check_type(shape, 'shape', (list), 'sample')
        check_type(seed, 'seed', (int), 'sample')

373 374 375 376 377
        batch_shape = list((self.loc + self.scale).shape)

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
378 379
                self.loc + self.scale, batch_shape + shape, self.loc.dtype, 0.0
            )
380
            zero_tmp_shape = nn.shape(zero_tmp)
381 382 383
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed
            )
384 385 386 387
            output = normal_random_tmp * (zero_tmp + self.scale) + self.loc
            return nn.reshape(output, output_shape)
        else:
            output_shape = shape + batch_shape
388 389 390 391 392 393 394 395
            output = (
                nn.gaussian_random(output_shape, mean=0.0, std=1.0, seed=seed)
                * (
                    tensor.zeros(output_shape, dtype=self.loc.dtype)
                    + self.scale
                )
                + self.loc
            )
396 397 398 399 400 401 402 403 404
            if self.all_arg_is_float:
                return nn.reshape(output, shape)
            else:
                return output

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
L
LielinJiang 已提交
405
          Variable: Shannon entropy of normal distribution.The data type is float32.
406 407 408

        """
        batch_shape = list((self.loc + self.scale).shape)
409 410 411 412 413 414
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.loc.dtype, 0.0
        )
        return (
            0.5 + 0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp))
        )
415 416 417 418 419 420 421 422

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Variable): The input tensor.

        Returns:
L
LielinJiang 已提交
423
          Variable: log probability.The data type is same with value.
424 425

        """
426 427 428
        check_variable_and_dtype(
            value, 'value', ['float32', 'float64'], 'log_prob'
        )
429

430 431
        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
432 433 434 435 436
        return (
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            - log_scale
            - math.log(math.sqrt(2.0 * math.pi))
        )
437 438 439 440 441 442 443 444

    def kl_divergence(self, other):
        """The KL-divergence between two normal distributions.

        Args:
            other (Normal): instance of Normal.

        Returns:
L
LielinJiang 已提交
445
            Variable: kl-divergence between two normal distributions.The data type is float32.
446 447

        """
448 449 450

        check_type(other, 'other', Normal, 'kl_divergence')

451
        var_ratio = self.scale / other.scale
452
        var_ratio = var_ratio * var_ratio
453
        t1 = (self.loc - other.loc) / other.scale
454 455
        t1 = t1 * t1
        return 0.5 * (var_ratio + t1 - 1.0 - nn.log(var_ratio))
456 457 458


class Categorical(Distribution):
459
    r"""
460 461 462
    Categorical distribution is a discrete probability distribution that
    describes the possible results of a random variable that can take on
    one of K possible categories, with the probability of each category
463 464
    separately specified.

465 466 467 468 469 470 471 472 473 474
    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

475
    Args:
476
        logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

    Examples:
        .. code-block:: python

          import numpy as np
          from paddle.fluid import layers
          from paddle.fluid.layers import Categorical

          a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
          a_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(a_logits_npdata, a_logits_tensor)

          b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
          b_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(b_logits_npdata, b_logits_tensor)
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
          a = Categorical(a_logits_tensor)
          b = Categorical(b_logits_tensor)

          a.entropy()
          # [0.6931472] with shape: [1]

          b.entropy()
          # [0.6931347] with shape: [1]

          a.kl_divergence(b)
          # [1.2516975e-05] with shape: [1]

    """

    def __init__(self, logits):
        """
        Args:
510
            logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
511
        """
512 513 514
        check_type(
            logits, 'logits', (np.ndarray, tensor.Variable, list), 'Categorical'
        )
515

516 517 518 519 520 521 522 523 524
        if self._validate_args(logits):
            self.logits = logits
        else:
            self.logits = self._to_variable(logits)[0]

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
525
            other (Categorical): instance of Categorical. The data type is float32.
526 527 528 529 530

        Returns:
            Variable: kl-divergence between two Categorical distributions.

        """
531
        check_type(other, 'other', Categorical, 'kl_divergence')
532 533 534

        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        other_logits = other.logits - nn.reduce_max(
535 536
            other.logits, dim=-1, keep_dim=True
        )
537 538
        e_logits = paddle.exp(logits)
        other_e_logits = paddle.exp(other_logits)
539 540 541 542 543 544
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        kl = nn.reduce_sum(
            prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
            dim=-1,
545 546
            keep_dim=True,
        )
547 548 549 550 551 552 553

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
554
          Variable: Shannon entropy of Categorical distribution. The data type is float32.
555 556 557

        """
        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
558
        e_logits = paddle.exp(logits)
559 560 561
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        entropy = -1.0 * nn.reduce_sum(
562 563
            prob * (logits - nn.log(z)), dim=-1, keep_dim=True
        )
564 565 566 567 568

        return entropy


class MultivariateNormalDiag(Distribution):
569
    r"""
570 571 572
    A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
    and a covariance matrix.

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    The probability density function (pdf) is:

    .. math::

        pdf(x; loc, scale) = \\frac{e^{-\\frac{||y||^2}{2}}}{Z}

    where:
    .. math::

        y = inv(scale) @ (x - loc)
        Z = (2\\pi)^{0.5k} |det(scale)|


    In the above equation:

    * :math:`inv` : denotes to take the inverse of the matrix.
    * :math:`@` : denotes matrix multiplication.
    * :math:`det` : denotes to evaluate the determinant.

592
    Args:
593 594 595 596 597
        loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution with shape :math:`[k]` .
            The data type is float32.
        scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of multivariateNormal
            distribution  with shape :math:`[k, k]` . All elements are 0 except diagonal elements. The data type is
            float32.
598 599 600

    Examples:
        .. code-block:: python
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid.layers import MultivariateNormalDiag

            a_loc_npdata = np.array([0.3,0.5],dtype="float32")
            a_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_loc_npdata, a_loc_tensor)


            a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
            a_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(a_scale_npdata, a_scale_tensor)

            b_loc_npdata = np.array([0.2,0.4],dtype="float32")
            b_loc_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_loc_npdata, b_loc_tensor)

            b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
            b_scale_tensor = layers.create_tensor(dtype="float32")
            layers.assign(b_scale_npdata, b_scale_tensor)

            a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
            b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
625

626 627 628
            a.entropy()
            # [2.033158] with shape: [1]
            b.entropy()
T
tianshuo78520a 已提交
629
            # [1.7777451] with shape: [1]
630 631 632

            a.kl_divergence(b)
            # [0.06542051] with shape: [1]
633

634 635 636
    """

    def __init__(self, loc, scale):
637 638 639 640 641 642 643 644 645 646 647 648
        check_type(
            loc,
            'loc',
            (np.ndarray, tensor.Variable, list),
            'MultivariateNormalDiag',
        )
        check_type(
            scale,
            'scale',
            (np.ndarray, tensor.Variable, list),
            'MultivariateNormalDiag',
        )
649

650 651 652 653 654 655 656 657 658 659 660
        if self._validate_args(loc, scale):
            self.loc = loc
            self.scale = scale
        else:
            self.loc, self.scale = self._to_variable(loc, scale)

    def _det(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
661 662
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype)
        )
663
        det_diag = paddle.prod(value + one_all - one_diag)
664 665 666 667 668 669 670 671

        return det_diag

    def _inv(self, value):

        batch_shape = list(value.shape)
        one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
        one_diag = tensor.diag(
672 673
            tensor.ones(shape=[batch_shape[0]], dtype=self.loc.dtype)
        )
674
        inv_diag = paddle.pow(value, (one_all - 2 * one_diag))
675 676 677 678 679 680 681

        return inv_diag

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
682
          Variable: Shannon entropy of Multivariate Normal distribution. The data type is float32.
683 684

        """
685 686 687 688
        entropy = 0.5 * (
            self.scale.shape[0] * (1.0 + math.log(2 * math.pi))
            + nn.log(self._det(self.scale))
        )
689 690 691 692 693 694 695 696 697 698

        return entropy

    def kl_divergence(self, other):
        """The KL-divergence between two Multivariate Normal distributions.

        Args:
            other (MultivariateNormalDiag): instance of Multivariate Normal.

        Returns:
699
            Variable: kl-divergence between two Multivariate Normal distributions. The data type is float32.
700 701

        """
702
        check_type(other, 'other', MultivariateNormalDiag, 'kl_divergence')
703 704

        tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
705 706 707
        loc_matmul_cov = nn.matmul(
            (other.loc - self.loc), self._inv(other.scale)
        )
708 709 710 711 712 713
        tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
        k = list(self.scale.shape)[0]
        ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
        kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)

        return kl