build_cinn_pass_test.cc 15.5 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

#include <algorithm>
#include <memory>
19
#include <string>
J
jiangcheng 已提交
20 21 22 23 24 25 26

#include "gtest/gtest.h"

#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_desc.h"
27
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
J
jiangcheng 已提交
28 29
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
30
#include "paddle/fluid/operators/cinn_launch_op.h"
J
jiangcheng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

inline bool CheckNodeExisted(const std::unordered_set<Node*>& nodes,
                             const std::string& op_name) {
  return std::find_if(nodes.begin(), nodes.end(), [&op_name](const Node* node) {
           return node->Name() == op_name;
         }) != nodes.end();
}

inline int CountNode(const std::unordered_set<Node*>& nodes,
                     const std::string& op_name) {
  return std::count_if(
      nodes.begin(), nodes.end(),
      [&op_name](const Node* node) { return node->Name() == op_name; });
}

inline Node* GetNode(const std::unordered_set<Node*>& nodes,
                     const std::string& op_name) {
55 56 57 58
  return *std::find_if(nodes.begin(), nodes.end(),
                       [&op_name](const Node* node) {
                         return node->Name().find(op_name) != std::string::npos;
                       });
J
jiangcheng 已提交
59 60
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
inline bool CheckGraphIndependence(const std::unordered_set<Node*>& nodes) {
  auto check_node_ok = [&nodes](Node* n1, Node* n2) -> bool {
    if (n1->IsOp() && !n2->IsVar()) {
      return false;
    }
    if (n1->IsVar() && !n2->IsOp()) {
      return false;
    }
    if (nodes.count(n2) == 0) {
      return false;
    }
    return true;
  };

  for (auto node : nodes) {
    for (auto in : node->inputs) {
      if (!check_node_ok(node, in)) {
        return false;
      }
    }
    for (auto out : node->outputs) {
      if (!check_node_ok(node, out)) {
        return false;
      }
    }
  }
  return true;
}

90 91 92 93 94
// Get compilation_key values
std::vector<std::string> GetCompilationKeys(const Graph& graph) {
  std::vector<std::string> compilation_keys;
  for (auto& node : graph.Nodes()) {
    if (node->IsOp() && node->Name() == kCinnLaunchOp) {
95 96
      compilation_keys.emplace_back(BOOST_GET_CONST(
          std::string, node->Op()->GetAttr(operators::kCompilationKey)));
97 98 99 100 101
    }
  }
  return compilation_keys;
}

J
jiangcheng 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
std::unique_ptr<Graph> BuildNoCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);
  // var1 --
  //        | --> fake1 --> var3 --> fake2 --> var4
  // var2 --
  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");

  VarDesc var1("var1");
  VarDesc var2("var2");
115 116
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  VarDesc var3("var3");
  VarDesc var4("var4");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);

  // fill op node
  fake1->inputs = {v1, v2};
  fake1->outputs = {v3};
  fake2->inputs = {v3};
  fake2->outputs = {v4};

  // fill variable node
  v1->outputs = {fake1};
  v2->outputs = {fake1};

  v3->inputs = {fake1};
  v3->outputs = {fake2};

  v4->inputs = {fake2};

  return g;
}

TEST(BuildCinnPassTest, NoCinnSubgraph) {
  auto g = BuildNoCinnSubgraph();
  auto previous_nodes = g->Nodes();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, origin graph should no change
  ASSERT_EQ(previous_nodes, g->Nodes());
156
  ASSERT_TRUE(CheckGraphIndependence(g->Nodes()));
J
jiangcheng 已提交
157

158 159
  // After search, there should be no cinn subgraph
  ASSERT_TRUE(GetCompilationKeys(*g).empty());
J
jiangcheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

std::unique_ptr<Graph> BuildAllOpSupportCinnGraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // v1 --
  //      | --> mul --> v3 --
  // v2 --                   | --> add --> v5 --> relu --> v6
  //                    v4 --

  OpDesc add_op;
  add_op.SetType("add");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");

  VarDesc var1("var1");
  VarDesc var2("var2");
180 181
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
182 183 184 185 186 187 188 189 190
  VarDesc var3("var3");
  VarDesc var4("var4");
  VarDesc var5("var5");
  VarDesc var6("var6");

  ir::Node* add = g->CreateOpNode(&add_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);

191
  ir::Node* v0 = g->CreateEmptyNode("var0", Node::Type::kVariable);
J
jiangcheng 已提交
192 193 194 195 196 197
  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);
  ir::Node* v5 = g->CreateVarNode(&var5);
  ir::Node* v6 = g->CreateVarNode(&var6);
198
  ir::Node* v7 = g->CreateControlDepVar();
J
jiangcheng 已提交
199 200

  // fill op node
201
  mul->inputs = {v0, v1, v2};
J
jiangcheng 已提交
202 203 204 205
  mul->outputs = {v3};
  add->inputs = {v3, v4};
  add->outputs = {v5};
  relu->inputs = {v5};
206
  relu->outputs = {v6, v7};
J
jiangcheng 已提交
207 208

  // fill variable node
209
  v0->outputs = {mul};
J
jiangcheng 已提交
210 211 212 213 214 215 216 217 218 219 220 221
  v1->outputs = {mul};
  v2->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {add};

  v4->outputs = {add};

  v5->inputs = {add};
  v5->outputs = {relu};

  v6->inputs = {relu};
222
  v7->inputs = {relu};
J
jiangcheng 已提交
223 224 225 226 227 228 229 230 231 232 233 234

  return g;
}

TEST(BuildCinnPassTest, AllOpSupportCinn) {
  auto g = BuildAllOpSupportCinnGraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
235 236 237
  // v0 --|
  // v1 --|                   |--> v6
  // v2 --| --> kCinnLaunchOp |--> v7
J
jiangcheng 已提交
238 239
  // v4 --|
  const auto& nodes = g->Nodes();
240
  ASSERT_EQ(nodes.size(), static_cast<size_t>(7));
241
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
242 243 244 245

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));
  auto* cinn_op = GetNode(nodes, kCinnLaunchOp);
246
  auto* v0 = GetNode(nodes, "var0");
J
jiangcheng 已提交
247 248 249 250
  auto* v1 = GetNode(nodes, "var1");
  auto* v2 = GetNode(nodes, "var2");
  auto* v4 = GetNode(nodes, "var4");
  auto* v6 = GetNode(nodes, "var6");
251
  auto* v7 = GetNode(nodes, Node::kControlDepVarName);
J
jiangcheng 已提交
252 253 254

  ASSERT_EQ(
      std::unordered_set<Node*>(cinn_op->inputs.begin(), cinn_op->inputs.end()),
255 256
      std::unordered_set<Node*>({v0, v1, v2, v4}));
  ASSERT_EQ(cinn_op->outputs, std::vector<Node*>({v6, v7}));
J
jiangcheng 已提交
257 258 259 260 261 262 263 264 265
  ASSERT_EQ(v1->outputs, std::vector<Node*>({cinn_op}));
  ASSERT_EQ(v6->inputs, std::vector<Node*>({cinn_op}));

  // previous op (mul, add, relu) should all removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "add"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // After search, there should has just one cinn subgraph
266 267
  // feed --> v1 --
  //               | --> mul --> v3 --
268
  //          v2 --                   | --> add --> v5 --> relu --> v6 --> fetch
269
  //                    feed --> v4 --
270 271 272 273
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(1));
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph = cinn_compiler->FindGraph(compilation_keys[0]);
J
jiangcheng 已提交
274

275
  const auto& subnodes = subgraph.Nodes();
276
  ASSERT_EQ(subnodes.size(), static_cast<size_t>(12));
277
  ASSERT_TRUE(CheckGraphIndependence(subnodes));
J
jiangcheng 已提交
278 279 280 281

  ASSERT_TRUE(CheckNodeExisted(subnodes, "mul"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "add"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "relu"));
282
  ASSERT_EQ(CountNode(subnodes, "feed"), 2);
283
  ASSERT_EQ(CountNode(subnodes, "fetch"), 1);
284 285 286 287 288 289 290 291 292 293 294 295 296

  // No-parameter input should has feed op
  auto new_v1 = GetNode(subnodes, "var1");
  ASSERT_EQ(new_v1->inputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v1->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v1->inputs[0]->Name(), "feed");
  ASSERT_EQ(new_v1->outputs[0]->Name(), "mul");

  // Parameter input should not has feed op
  auto new_v2 = GetNode(subnodes, "var2");
  ASSERT_TRUE(new_v2->inputs.empty());
  ASSERT_EQ(new_v2->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v2->outputs[0]->Name(), "mul");
297 298 299 300 301 302 303

  // output should has fetch op
  auto new_v6 = GetNode(subnodes, "var6");
  ASSERT_EQ(new_v6->inputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v6->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v6->inputs[0]->Name(), "relu");
  ASSERT_EQ(new_v6->outputs[0]->Name(), "fetch");
J
jiangcheng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
}

std::unique_ptr<Graph> BuildGraphWithOneCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // fake1 --> v1 --
  //                | --> mul --> v3 --> relu --> v4 --> fake2
  //           v2 --

  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");

  VarDesc var1("var1");
  VarDesc var2("var2");
325 326
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  VarDesc var3("var3");
  VarDesc var4("var4");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);

  // fill op node
  fake1->outputs = {v1};
  mul->inputs = {v2, v1};
  mul->outputs = {v3};
  relu->inputs = {v3};
  relu->outputs = {v4};
  fake2->inputs = {v4};

  // fill variable node
  v2->outputs = {mul};

  v1->inputs = {fake1};
  v1->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {relu};

  v4->inputs = {relu};
  v4->outputs = {fake2};

  return g;
}

TEST(BuildCinnPassTest, OneCinnSubgraph) {
  auto g = BuildGraphWithOneCinnSubgraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
  // fake1 --> v1 --
  //                | --> kCinnLaunchOp --> v4 --> fake2
  //           v2 --
  const auto& nodes = g->Nodes();
  ASSERT_EQ(nodes.size(), static_cast<size_t>(6));
376
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));

  // previous op (mul, add, relu) should be removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // previous op (fake1, fake2) should be preserved
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake1"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake2"));

  // After search, there should has just one cinn subgraph
390
  // feed --> v1 --
391
  //               | --> mul --> v3 --> relu --> v4 --> fetch
392
  //          v2 --
393 394 395 396
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(1));
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph = cinn_compiler->FindGraph(compilation_keys[0]);
J
jiangcheng 已提交
397

398
  const auto& subnodes = subgraph.Nodes();
399
  ASSERT_EQ(subnodes.size(), static_cast<size_t>(8));
400
  ASSERT_TRUE(CheckGraphIndependence(subnodes));
J
jiangcheng 已提交
401 402 403

  ASSERT_TRUE(CheckNodeExisted(subnodes, "mul"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "relu"));
404
  ASSERT_EQ(CountNode(subnodes, "feed"), 1);
405
  ASSERT_EQ(CountNode(subnodes, "fetch"), 1);
J
jiangcheng 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
}

std::unique_ptr<Graph> BuildGraphWithMultiCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // fake1 --> v1 --
  //                | --> mul --> v3 --> fake2 --> v4 --> relu --> v5 --> fake3
  //           v2 --

  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");
  OpDesc fake3_op;
  fake3_op.SetType("fake3");

  VarDesc var1("var1");
  VarDesc var2("var2");
429 430
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  VarDesc var3("var3");
  VarDesc var4("var4");
  VarDesc var5("var5");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);
  ir::Node* fake3 = g->CreateOpNode(&fake3_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);
  ir::Node* v5 = g->CreateVarNode(&var5);

  // fill op node
  fake1->outputs = {v1};
  mul->inputs = {v2, v1};
  mul->outputs = {v3};
  fake2->inputs = {v3};
  fake2->outputs = {v4};
  relu->inputs = {v4};
  relu->outputs = {v5};
  fake3->inputs = {v5};

  // fill variable node
  v2->outputs = {mul};

  v1->inputs = {fake1};
  v1->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {fake2};

  v4->inputs = {fake2};
  v4->outputs = {relu};

  v5->inputs = {relu};
  v5->outputs = {fake3};

  return g;
}

TEST(BuildCinnPassTest, MultiCinnSubgraph) {
  auto g = BuildGraphWithMultiCinnSubgraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
  // fake1 -> v1 -
  //              | -> CinnOp -> v3 -> fake2 -> v4 -> CinnOp ->v5 -> fake3
  //          v2 -
  const auto& nodes = g->Nodes();
  ASSERT_EQ(nodes.size(), static_cast<size_t>(10));
488
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));
  ASSERT_EQ(CountNode(nodes, kCinnLaunchOp), 2);

  // previous op (mul, add, relu) should be removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // previous op (fake1, fake2) should be preserved
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake1"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake2"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake3"));

  // After search, there should has two cinn subgraphs,
  // and each of subgraphs just has one node.
505 506
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(2));
J
jiangcheng 已提交
507

508
  // subgraph1:
509
  // feed --> v4 --> relu --> v5 --> fetch
510 511
  // subgraph2:
  // feed --> v1 --
512
  //               | --> mul --> v3 --> fetch
513
  //          v2 --
514 515 516
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph1 = cinn_compiler->FindGraph(compilation_keys[0]);
  const auto& subnodes1 = subgraph1.Nodes();
517
  ASSERT_TRUE(CheckGraphIndependence(subnodes1));
J
jiangcheng 已提交
518

519 520
  const auto& subgraph2 = cinn_compiler->FindGraph(compilation_keys[1]);
  const auto& subnodes2 = subgraph2.Nodes();
521 522 523 524
  ASSERT_TRUE(CheckGraphIndependence(subnodes2));

  if (CheckNodeExisted(subnodes1, "relu")) {
    ASSERT_EQ(subnodes1.size(), static_cast<size_t>(5));
525 526 527 528
    ASSERT_EQ(subnodes2.size(), static_cast<size_t>(6));
  } else {
    ASSERT_EQ(subnodes2.size(), static_cast<size_t>(5));
    ASSERT_EQ(subnodes1.size(), static_cast<size_t>(6));
529
  }
J
jiangcheng 已提交
530 531 532 533 534 535 536
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

USE_PASS(build_cinn_pass);