build_cinn_pass_test.cc 15.5 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

#include <algorithm>
#include <memory>
19
#include <string>
J
jiangcheng 已提交
20 21 22 23 24 25 26

#include "gtest/gtest.h"

#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_desc.h"
27
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
J
jiangcheng 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"

namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

inline bool CheckNodeExisted(const std::unordered_set<Node*>& nodes,
                             const std::string& op_name) {
  return std::find_if(nodes.begin(), nodes.end(), [&op_name](const Node* node) {
           return node->Name() == op_name;
         }) != nodes.end();
}

inline int CountNode(const std::unordered_set<Node*>& nodes,
                     const std::string& op_name) {
  return std::count_if(
      nodes.begin(), nodes.end(),
      [&op_name](const Node* node) { return node->Name() == op_name; });
}

inline Node* GetNode(const std::unordered_set<Node*>& nodes,
                     const std::string& op_name) {
54 55 56 57
  return *std::find_if(nodes.begin(), nodes.end(),
                       [&op_name](const Node* node) {
                         return node->Name().find(op_name) != std::string::npos;
                       });
J
jiangcheng 已提交
58 59
}

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
inline bool CheckGraphIndependence(const std::unordered_set<Node*>& nodes) {
  auto check_node_ok = [&nodes](Node* n1, Node* n2) -> bool {
    if (n1->IsOp() && !n2->IsVar()) {
      return false;
    }
    if (n1->IsVar() && !n2->IsOp()) {
      return false;
    }
    if (nodes.count(n2) == 0) {
      return false;
    }
    return true;
  };

  for (auto node : nodes) {
    for (auto in : node->inputs) {
      if (!check_node_ok(node, in)) {
        return false;
      }
    }
    for (auto out : node->outputs) {
      if (!check_node_ok(node, out)) {
        return false;
      }
    }
  }
  return true;
}

89 90 91 92 93 94 95 96 97 98 99 100
// Get compilation_key values
std::vector<std::string> GetCompilationKeys(const Graph& graph) {
  std::vector<std::string> compilation_keys;
  for (auto& node : graph.Nodes()) {
    if (node->IsOp() && node->Name() == kCinnLaunchOp) {
      compilation_keys.emplace_back(
          BOOST_GET_CONST(std::string, node->Op()->GetAttr(kCompilationKey)));
    }
  }
  return compilation_keys;
}

J
jiangcheng 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
std::unique_ptr<Graph> BuildNoCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);
  // var1 --
  //        | --> fake1 --> var3 --> fake2 --> var4
  // var2 --
  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");

  VarDesc var1("var1");
  VarDesc var2("var2");
114 115
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  VarDesc var3("var3");
  VarDesc var4("var4");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);

  // fill op node
  fake1->inputs = {v1, v2};
  fake1->outputs = {v3};
  fake2->inputs = {v3};
  fake2->outputs = {v4};

  // fill variable node
  v1->outputs = {fake1};
  v2->outputs = {fake1};

  v3->inputs = {fake1};
  v3->outputs = {fake2};

  v4->inputs = {fake2};

  return g;
}

TEST(BuildCinnPassTest, NoCinnSubgraph) {
  auto g = BuildNoCinnSubgraph();
  auto previous_nodes = g->Nodes();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, origin graph should no change
  ASSERT_EQ(previous_nodes, g->Nodes());
155
  ASSERT_TRUE(CheckGraphIndependence(g->Nodes()));
J
jiangcheng 已提交
156

157 158
  // After search, there should be no cinn subgraph
  ASSERT_TRUE(GetCompilationKeys(*g).empty());
J
jiangcheng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
}

std::unique_ptr<Graph> BuildAllOpSupportCinnGraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // v1 --
  //      | --> mul --> v3 --
  // v2 --                   | --> add --> v5 --> relu --> v6
  //                    v4 --

  OpDesc add_op;
  add_op.SetType("add");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");

  VarDesc var1("var1");
  VarDesc var2("var2");
179 180
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
181 182 183 184 185 186 187 188 189
  VarDesc var3("var3");
  VarDesc var4("var4");
  VarDesc var5("var5");
  VarDesc var6("var6");

  ir::Node* add = g->CreateOpNode(&add_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);

190
  ir::Node* v0 = g->CreateEmptyNode("var0", Node::Type::kVariable);
J
jiangcheng 已提交
191 192 193 194 195 196
  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);
  ir::Node* v5 = g->CreateVarNode(&var5);
  ir::Node* v6 = g->CreateVarNode(&var6);
197
  ir::Node* v7 = g->CreateControlDepVar();
J
jiangcheng 已提交
198 199

  // fill op node
200
  mul->inputs = {v0, v1, v2};
J
jiangcheng 已提交
201 202 203 204
  mul->outputs = {v3};
  add->inputs = {v3, v4};
  add->outputs = {v5};
  relu->inputs = {v5};
205
  relu->outputs = {v6, v7};
J
jiangcheng 已提交
206 207

  // fill variable node
208
  v0->outputs = {mul};
J
jiangcheng 已提交
209 210 211 212 213 214 215 216 217 218 219 220
  v1->outputs = {mul};
  v2->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {add};

  v4->outputs = {add};

  v5->inputs = {add};
  v5->outputs = {relu};

  v6->inputs = {relu};
221
  v7->inputs = {relu};
J
jiangcheng 已提交
222 223 224 225 226 227 228 229 230 231 232 233

  return g;
}

TEST(BuildCinnPassTest, AllOpSupportCinn) {
  auto g = BuildAllOpSupportCinnGraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
234 235 236
  // v0 --|
  // v1 --|                   |--> v6
  // v2 --| --> kCinnLaunchOp |--> v7
J
jiangcheng 已提交
237 238
  // v4 --|
  const auto& nodes = g->Nodes();
239
  ASSERT_EQ(nodes.size(), static_cast<size_t>(7));
240
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
241 242 243 244

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));
  auto* cinn_op = GetNode(nodes, kCinnLaunchOp);
245
  auto* v0 = GetNode(nodes, "var0");
J
jiangcheng 已提交
246 247 248 249
  auto* v1 = GetNode(nodes, "var1");
  auto* v2 = GetNode(nodes, "var2");
  auto* v4 = GetNode(nodes, "var4");
  auto* v6 = GetNode(nodes, "var6");
250
  auto* v7 = GetNode(nodes, Node::kControlDepVarName);
J
jiangcheng 已提交
251 252 253

  ASSERT_EQ(
      std::unordered_set<Node*>(cinn_op->inputs.begin(), cinn_op->inputs.end()),
254 255
      std::unordered_set<Node*>({v0, v1, v2, v4}));
  ASSERT_EQ(cinn_op->outputs, std::vector<Node*>({v6, v7}));
J
jiangcheng 已提交
256 257 258 259 260 261 262 263 264
  ASSERT_EQ(v1->outputs, std::vector<Node*>({cinn_op}));
  ASSERT_EQ(v6->inputs, std::vector<Node*>({cinn_op}));

  // previous op (mul, add, relu) should all removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "add"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // After search, there should has just one cinn subgraph
265 266
  // feed --> v1 --
  //               | --> mul --> v3 --
267
  //          v2 --                   | --> add --> v5 --> relu --> v6 --> fetch
268
  //                    feed --> v4 --
269 270 271 272
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(1));
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph = cinn_compiler->FindGraph(compilation_keys[0]);
J
jiangcheng 已提交
273

274
  const auto& subnodes = subgraph.Nodes();
275
  ASSERT_EQ(subnodes.size(), static_cast<size_t>(12));
276
  ASSERT_TRUE(CheckGraphIndependence(subnodes));
J
jiangcheng 已提交
277 278 279 280

  ASSERT_TRUE(CheckNodeExisted(subnodes, "mul"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "add"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "relu"));
281
  ASSERT_EQ(CountNode(subnodes, "feed"), 2);
282
  ASSERT_EQ(CountNode(subnodes, "fetch"), 1);
283 284 285 286 287 288 289 290 291 292 293 294 295

  // No-parameter input should has feed op
  auto new_v1 = GetNode(subnodes, "var1");
  ASSERT_EQ(new_v1->inputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v1->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v1->inputs[0]->Name(), "feed");
  ASSERT_EQ(new_v1->outputs[0]->Name(), "mul");

  // Parameter input should not has feed op
  auto new_v2 = GetNode(subnodes, "var2");
  ASSERT_TRUE(new_v2->inputs.empty());
  ASSERT_EQ(new_v2->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v2->outputs[0]->Name(), "mul");
296 297 298 299 300 301 302

  // output should has fetch op
  auto new_v6 = GetNode(subnodes, "var6");
  ASSERT_EQ(new_v6->inputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v6->outputs.size(), static_cast<size_t>(1));
  ASSERT_EQ(new_v6->inputs[0]->Name(), "relu");
  ASSERT_EQ(new_v6->outputs[0]->Name(), "fetch");
J
jiangcheng 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

std::unique_ptr<Graph> BuildGraphWithOneCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // fake1 --> v1 --
  //                | --> mul --> v3 --> relu --> v4 --> fake2
  //           v2 --

  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");

  VarDesc var1("var1");
  VarDesc var2("var2");
324 325
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  VarDesc var3("var3");
  VarDesc var4("var4");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);

  // fill op node
  fake1->outputs = {v1};
  mul->inputs = {v2, v1};
  mul->outputs = {v3};
  relu->inputs = {v3};
  relu->outputs = {v4};
  fake2->inputs = {v4};

  // fill variable node
  v2->outputs = {mul};

  v1->inputs = {fake1};
  v1->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {relu};

  v4->inputs = {relu};
  v4->outputs = {fake2};

  return g;
}

TEST(BuildCinnPassTest, OneCinnSubgraph) {
  auto g = BuildGraphWithOneCinnSubgraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
  // fake1 --> v1 --
  //                | --> kCinnLaunchOp --> v4 --> fake2
  //           v2 --
  const auto& nodes = g->Nodes();
  ASSERT_EQ(nodes.size(), static_cast<size_t>(6));
375
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));

  // previous op (mul, add, relu) should be removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // previous op (fake1, fake2) should be preserved
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake1"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake2"));

  // After search, there should has just one cinn subgraph
389
  // feed --> v1 --
390
  //               | --> mul --> v3 --> relu --> v4 --> fetch
391
  //          v2 --
392 393 394 395
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(1));
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph = cinn_compiler->FindGraph(compilation_keys[0]);
J
jiangcheng 已提交
396

397
  const auto& subnodes = subgraph.Nodes();
398
  ASSERT_EQ(subnodes.size(), static_cast<size_t>(8));
399
  ASSERT_TRUE(CheckGraphIndependence(subnodes));
J
jiangcheng 已提交
400 401 402

  ASSERT_TRUE(CheckNodeExisted(subnodes, "mul"));
  ASSERT_TRUE(CheckNodeExisted(subnodes, "relu"));
403
  ASSERT_EQ(CountNode(subnodes, "feed"), 1);
404
  ASSERT_EQ(CountNode(subnodes, "fetch"), 1);
J
jiangcheng 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

std::unique_ptr<Graph> BuildGraphWithMultiCinnSubgraph() {
  ProgramDesc prog;
  auto g = std::make_unique<Graph>(prog);

  // fake1 --> v1 --
  //                | --> mul --> v3 --> fake2 --> v4 --> relu --> v5 --> fake3
  //           v2 --

  OpDesc fake1_op;
  fake1_op.SetType("fake1");
  OpDesc mul_op;
  mul_op.SetType("mul");
  OpDesc relu_op;
  relu_op.SetType("relu");
  OpDesc fake2_op;
  fake2_op.SetType("fake2");
  OpDesc fake3_op;
  fake3_op.SetType("fake3");

  VarDesc var1("var1");
  VarDesc var2("var2");
428 429
  var2.SetPersistable(true);
  var2.SetIsParameter(true);
J
jiangcheng 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  VarDesc var3("var3");
  VarDesc var4("var4");
  VarDesc var5("var5");

  ir::Node* fake1 = g->CreateOpNode(&fake1_op);
  ir::Node* mul = g->CreateOpNode(&mul_op);
  ir::Node* relu = g->CreateOpNode(&relu_op);
  ir::Node* fake2 = g->CreateOpNode(&fake2_op);
  ir::Node* fake3 = g->CreateOpNode(&fake3_op);

  ir::Node* v1 = g->CreateVarNode(&var1);
  ir::Node* v2 = g->CreateVarNode(&var2);
  ir::Node* v3 = g->CreateVarNode(&var3);
  ir::Node* v4 = g->CreateVarNode(&var4);
  ir::Node* v5 = g->CreateVarNode(&var5);

  // fill op node
  fake1->outputs = {v1};
  mul->inputs = {v2, v1};
  mul->outputs = {v3};
  fake2->inputs = {v3};
  fake2->outputs = {v4};
  relu->inputs = {v4};
  relu->outputs = {v5};
  fake3->inputs = {v5};

  // fill variable node
  v2->outputs = {mul};

  v1->inputs = {fake1};
  v1->outputs = {mul};

  v3->inputs = {mul};
  v3->outputs = {fake2};

  v4->inputs = {fake2};
  v4->outputs = {relu};

  v5->inputs = {relu};
  v5->outputs = {fake3};

  return g;
}

TEST(BuildCinnPassTest, MultiCinnSubgraph) {
  auto g = BuildGraphWithMultiCinnSubgraph();

  auto pass =
      paddle::framework::ir::PassRegistry::Instance().Get("build_cinn_pass");
  pass->Apply(g.get());

  // After search, the graph should as following
  // fake1 -> v1 -
  //              | -> CinnOp -> v3 -> fake2 -> v4 -> CinnOp ->v5 -> fake3
  //          v2 -
  const auto& nodes = g->Nodes();
  ASSERT_EQ(nodes.size(), static_cast<size_t>(10));
487
  ASSERT_TRUE(CheckGraphIndependence(nodes));
J
jiangcheng 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

  // A new op named kCinnLaunchOp should be added
  ASSERT_TRUE(CheckNodeExisted(nodes, kCinnLaunchOp));
  ASSERT_EQ(CountNode(nodes, kCinnLaunchOp), 2);

  // previous op (mul, add, relu) should be removed
  ASSERT_FALSE(CheckNodeExisted(nodes, "mul"));
  ASSERT_FALSE(CheckNodeExisted(nodes, "relu"));

  // previous op (fake1, fake2) should be preserved
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake1"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake2"));
  ASSERT_TRUE(CheckNodeExisted(nodes, "fake3"));

  // After search, there should has two cinn subgraphs,
  // and each of subgraphs just has one node.
504 505
  auto compilation_keys = GetCompilationKeys(*g);
  ASSERT_EQ(compilation_keys.size(), static_cast<size_t>(2));
J
jiangcheng 已提交
506

507
  // subgraph1:
508
  // feed --> v4 --> relu --> v5 --> fetch
509 510
  // subgraph2:
  // feed --> v1 --
511
  //               | --> mul --> v3 --> fetch
512
  //          v2 --
513 514 515
  auto* cinn_compiler = CinnCompiler::GetInstance();
  const auto& subgraph1 = cinn_compiler->FindGraph(compilation_keys[0]);
  const auto& subnodes1 = subgraph1.Nodes();
516
  ASSERT_TRUE(CheckGraphIndependence(subnodes1));
J
jiangcheng 已提交
517

518 519
  const auto& subgraph2 = cinn_compiler->FindGraph(compilation_keys[1]);
  const auto& subnodes2 = subgraph2.Nodes();
520 521 522 523
  ASSERT_TRUE(CheckGraphIndependence(subnodes2));

  if (CheckNodeExisted(subnodes1, "relu")) {
    ASSERT_EQ(subnodes1.size(), static_cast<size_t>(5));
524 525 526 527
    ASSERT_EQ(subnodes2.size(), static_cast<size_t>(6));
  } else {
    ASSERT_EQ(subnodes2.size(), static_cast<size_t>(5));
    ASSERT_EQ(subnodes1.size(), static_cast<size_t>(6));
528
  }
J
jiangcheng 已提交
529 530 531 532 533 534 535
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

USE_PASS(build_cinn_pass);