gan_conf_image.py 9.0 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *

mode = get_config_arg("mode", str, "generator")
W
wangyang59 已提交
17
dataSource = get_config_arg("data", str, "mnist")
W
wangyang59 已提交
18 19 20 21 22 23 24 25 26 27
assert mode in set(["generator",
                    "discriminator",
                    "generator_training",
                    "discriminator_training"])

is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
is_generator = mode == "generator"
is_discriminator = mode == "discriminator"

W
wangyang59 已提交
28 29 30
# The network structure below follows the dcgan paper 
# (https://arxiv.org/abs/1511.06434)

W
wangyang59 已提交
31
print('mode=%s' % mode)
W
wangyang59 已提交
32
# the dim of the noise (z) as the input of the generator network
W
wangyang59 已提交
33
noise_dim = 100
W
wangyang59 已提交
34 35
# the number of filters in the layer in generator/discriminator that is 
# closet to the image
W
wangyang59 已提交
36 37
gf_dim = 64
df_dim = 64
W
wangyang59 已提交
38 39 40 41 42 43
if dataSource == "mnist":
    sample_dim = 28 # image dim
    c_dim = 1 # image color
else:
    sample_dim = 32
    c_dim = 3
W
wangyang59 已提交
44 45 46 47
s2, s4 = int(sample_dim/2), int(sample_dim/4), 
s8, s16 = int(sample_dim/8), int(sample_dim/16)

settings(
W
wangyang59 已提交
48 49 50
    batch_size=128,
    learning_rate=2e-4,
    learning_method=AdamOptimizer(beta1=0.5)
W
wangyang59 已提交
51 52 53
)

def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name, 
54 55
                 param_attr, bias_attr, param_attr_bn, bn, trans=False, 
                 act=ReluActivation()):
W
wangyang59 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    
    """
    conv_bn is a utility function that constructs a convolution/deconv layer 
    with an optional batch_norm layer

    :param bn: whether to use batch_norm_layer
    :type bn: bool
    :param trans: whether to use conv (False) or deconv (True)
    :type trans: bool
    """
    
    # calculate the filter_size and padding size based on the given
    # imgSize and ouput size
W
wangyang59 已提交
69 70 71 72 73 74 75 76 77 78 79
    tmp =  imgSize - (output_x - 1) * stride
    if tmp <= 1 or tmp > 5:
        raise ValueError("conv input-output dimension does not fit")
    elif tmp <= 3:
        filter_size = tmp + 2
        padding = 1
    else:
        filter_size = tmp
        padding = 0

    print (imgSize, output_x, stride, filter_size, padding)
80 81 82 83 84 85
    
    if trans:
        nameApx = "_conv"
    else:
        nameApx = "_convt"
    
W
wangyang59 已提交
86 87 88
    if bn:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
89
                   name=name + nameApx, num_channels=channels,
W
wangyang59 已提交
90 91 92
                   act=LinearActivation(), groups=1, stride=stride, 
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
93 94
                   filter_size_y=None, stride_y=None, padding_y=None, 
                   trans=trans)
W
wangyang59 已提交
95 96
        
        conv_bn = batch_norm_layer(conv, 
97 98
                         act=act, 
                         name=name + nameApx + "_bn", 
W
wangyang59 已提交
99 100 101 102 103 104 105 106
                         bias_attr=bias_attr, 
                         param_attr=param_attr_bn,
                         use_global_stats=False)
        
        return conv_bn
    else:
        conv = img_conv_layer(input, filter_size=filter_size, 
                   num_filters=num_filters,
107 108
                   name=name + nameApx, num_channels=channels,
                   act=act, groups=1, stride=stride, 
W
wangyang59 已提交
109 110
                   padding=padding, bias_attr=bias_attr,
                   param_attr=param_attr, shared_biases=True, layer_attr=None,
111 112
                   filter_size_y=None, stride_y=None, padding_y=None,
                   trans=trans)
W
wangyang59 已提交
113 114 115 116 117 118
        return conv
    
def generator(noise):
    """
    generator generates a sample given noise
    """
119 120 121
    param_attr = ParamAttr(is_static=is_discriminator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
122
    bias_attr = ParamAttr(is_static=is_discriminator_training,
123 124
                           initial_mean=0.0,
                           initial_std=0.0)
W
wangyang59 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    
    param_attr_bn=ParamAttr(is_static=is_discriminator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h1 = fc_layer(input=noise,
                    name="gen_layer_h1",
                    size=s8 * s8 * gf_dim * 4,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    act=LinearActivation())
    
    h1_bn = batch_norm_layer(h1, 
                     act=ReluActivation(), 
                     name="gen_layer_h1_bn", 
                     bias_attr=bias_attr, 
                     param_attr=param_attr_bn,
                     use_global_stats=False)
    
144 145 146 147 148 149 150 151 152 153 154 155
    h2_bn = conv_bn(h1_bn, 
                    channels=gf_dim*4, 
                    output_x=s8,
                    num_filters=gf_dim*2, 
                    imgSize=s4,
                    stride=2,
                    name="gen_layer_h2", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
156
    
157 158 159 160 161 162 163 164 165 166 167 168
    h3_bn = conv_bn(h2_bn, 
                    channels=gf_dim*2, 
                    output_x=s4,
                    num_filters=gf_dim, 
                    imgSize=s2,
                    stride=2,
                    name="gen_layer_h3", 
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    param_attr_bn=param_attr_bn,
                    bn=True,
                    trans=True)
W
wangyang59 已提交
169 170
     
    
171 172 173 174 175 176 177 178 179 180 181 182 183
    return conv_bn(h3_bn,
                   channels=gf_dim, 
                   output_x=s2,
                   num_filters=c_dim, 
                   imgSize=sample_dim,
                   stride=2,
                   name="gen_layer_h4", 
                   param_attr=param_attr, 
                   bias_attr=bias_attr, 
                   param_attr_bn=param_attr_bn,
                   bn=False,
                   trans=True,
                   act=TanhActivation())
W
wangyang59 已提交
184 185 186 187 188 189 190 191 192 193


def discriminator(sample):
    """
    discriminator ouputs the probablity of a sample is from generator
    or real data.
    The output has two dimenstional: dimension 0 is the probablity
    of the sample is from generator and dimension 1 is the probabblity
    of the sample is from real data.
    """
194 195 196
    param_attr = ParamAttr(is_static=is_generator_training,
                           initial_mean=0.0,
                           initial_std=0.02)
W
wangyang59 已提交
197
    bias_attr = ParamAttr(is_static=is_generator_training,
198 199
                          initial_mean=0.0,
                          initial_std=0.0)
W
wangyang59 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    
    param_attr_bn=ParamAttr(is_static=is_generator_training,
                           initial_mean=1.0,
                           initial_std=0.02)
    
    h0 = conv_bn(sample, 
                 channels=c_dim, 
                 imgSize=sample_dim,
                 num_filters=df_dim, 
                 output_x=s2, 
                 stride=2, 
                 name="dis_h0", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=False)
    
    h1_bn = conv_bn(h0, 
                 channels=df_dim,
                 imgSize=s2,
                 num_filters=df_dim*2, 
                 output_x=s4, 
                 stride=2, 
                 name="dis_h1", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)

    h2_bn = conv_bn(h1_bn, 
                 channels=df_dim*2,
                 imgSize=s4,
                 num_filters=df_dim*4, 
                 output_x=s8, 
                 stride=2, 
                 name="dis_h2", 
                 param_attr=param_attr, 
                 bias_attr=bias_attr, 
                 param_attr_bn=param_attr_bn, 
                 bn=True)
        
    return fc_layer(input=h2_bn, name="dis_prob", size=2,
                    bias_attr=bias_attr,
                    param_attr=param_attr,
                    act=SoftmaxActivation())



if is_generator_training:
    noise = data_layer(name="noise", size=noise_dim)
    sample = generator(noise)

if is_discriminator_training:
    sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim)

if is_generator_training or is_discriminator_training:
    label = data_layer(name="label", size=1)
257
    prob = discriminator(sample)
W
wangyang59 已提交
258 259 260 261 262 263 264
    cost = cross_entropy(input=prob, label=label)
    classification_error_evaluator(input=prob, label=label, name=mode+'_error')
    outputs(cost)

if is_generator:
    noise = data_layer(name="noise", size=noise_dim)
    outputs(generator(noise))