fp16_helper.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.distributed.fleet.meta_optimizers.common import is_optimizer_op, OP_ROLE_KEY, OpRole
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *

from paddle.fluid import core


class FP16Utils(object):
    def __init__(self):
        pass

    @staticmethod
    def is_fp16_cast_op(block, op, params):
        if op.type != "cast":
            return False
        if is_optimizer_op(op):
            return False
        assert (len(op.desc.input_arg_names()) == 1)
        assert (len(op.desc.output_arg_names()) == 1)
        input_name, output_name = op.desc.input_arg_names()[
            0], op.desc.output_arg_names()[0]
        if input_name not in params:
            return False
        input_var = block.var(input_name)
        output_var = block.var(output_name)
        if input_var.dtype != core.VarDesc.VarType.FP32 or \
            output_var.dtype != core.VarDesc.VarType.FP16:
            return False
        return True

    @staticmethod
    def is_fp32_cast_op(block, op):
        if op.type != "cast":
            return False
        if not is_optimizer_op(op):
            return False
        assert (len(op.desc.input_arg_names()) == 1)
        assert (len(op.desc.output_arg_names()) == 1)
        input_name, output_name = op.desc.input_arg_names()[
            0], op.desc.output_arg_names()[0]
        input_var = block.var(input_name)
        output_var = block.var(output_name)
        if input_var.dtype != core.VarDesc.VarType.FP16 or \
            output_var.dtype != core.VarDesc.VarType.FP32:
            return False
        return True

    @staticmethod
    def remove_cast_op(block, params, segment, offset):
        inserted_op_num = 0
        for op_idx in reversed(
                range(offset + segment._start_idx, offset + segment._end_idx)):
            op = block.ops[op_idx]
            if FP16Utils.is_fp16_cast_op(block, op, params):
                block._remove_op(op_idx, sync=False)
                inserted_op_num -= 1
        block._sync_with_cpp()
        return inserted_op_num

    @staticmethod
74 75
    def prune_fp16(block, shard, reduced_grads_to_param, ring_id):
        """
76
        1. prune all cast_fp16_to_fp32 ops if the param not belongs to this shard
77 78
        2. revise amp inifine grad checking for sharding
        """
79 80 81 82 83
        # remove cast
        for idx, op in reversed(list(enumerate(block.ops))):
            if not FP16Utils.is_fp32_cast_op(block, op):
                continue
            output_name = op.desc.output_arg_names()[0]
84 85 86 87
            # TODO (JZ-LIANG) revise this for uniform mixed parallelism
            param_name = output_name.strip(
                "@GRAD@MERGED"
            ) if "@MERGED" in output_name else output_name.strip("@GRAD")
88
            if param_name not in shard.global_params:
89 90 91
                raise ValueError("Output 'X' of cast_op must be a grad of"
                                 "model param, but {} is not a grad".format(
                                     output_name))
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            if output_name in reduced_grads_to_param:
                continue
            if shard.has_param(param_name):
                continue
            block._remove_op(idx, sync=False)
            block._remove_var(output_name, sync=False)

        block._sync_with_cpp()
        update_loss_scaling_op_idx = -1
        inf_var_name = ''
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == "update_loss_scaling":
                update_loss_scaling_op_idx = idx
                inf_var_name = op.desc.input('FoundInfinite')[0]
                op._rename_input(inf_var_name, inf_var_name + "@sharding")
            if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
                reversed_x = []
109
                reversed_x_paramname = []
110
                for input_name in op.desc.input('X'):
111 112 113 114 115
                    # TODO (JZ-LIANG) revise this for uniform mixed parallelism
                    if "@MERGED" in input_name:
                        param_name = input_name.strip("@GRAD@MERGED")
                    else:
                        param_name = input_name.strip("@GRAD")
116 117 118 119 120 121
                    if param_name not in shard.global_params:
                        raise ValueError(
                            "Input 'X' of check_finite_and_unscale must"
                            "be grads, but {} is not a grad".format(input_name))
                    if shard.has_param(param_name):
                        reversed_x.append(input_name)
122
                        reversed_x_paramname.append(param_name)
123 124
                op.desc.set_input('X', reversed_x)
                op.desc.set_output('Out', reversed_x)
125 126 127 128 129 130 131 132 133 134 135

                # the grad checking should take the all and only param in the current shard
                to_check_param = set(reversed_x_paramname)
                should_check_param = set(shard.global_params).intersection(
                    set([param for param, worker_idx in shard.global_param2device.items() \
                        if worker_idx == shard.worker_idx]))
                assert to_check_param == should_check_param, "amp \
                    check_finite_and_unscale checking miss [{}] and got unexpected [{}]".format(
                    should_check_param - to_check_param,
                    to_check_param - should_check_param)

136 137 138
        if update_loss_scaling_op_idx == -1:
            return
        inf_var = block.var(inf_var_name)
139
        inf_var_int32 = block.create_var(
140 141 142 143 144 145 146 147 148 149 150
            name=inf_var_name + "@cast_int32",
            shape=inf_var.shape,
            dtype=core.VarDesc.VarType.INT32)
        inf_var_sharding = block.create_var(
            name=inf_var_name + "@sharding",
            shape=inf_var.shape,
            dtype=inf_var.dtype)
        block._insert_op_without_sync(
            update_loss_scaling_op_idx,
            type='cast',
            inputs={'X': inf_var},
151
            outputs={'Out': inf_var_int32},
152 153
            attrs={
                "in_dtype": inf_var.dtype,
154
                "out_dtype": inf_var_int32.dtype,
155 156
                OP_ROLE_KEY: OpRole.Optimize
            })
157
        # this allreduce communication should not overlap with calc
158
        block._insert_op_without_sync(
159
            update_loss_scaling_op_idx + 1,
160
            type='c_allreduce_max',
161 162 163 164 165 166 167
            inputs={'X': inf_var_int32},
            outputs={'Out': inf_var_int32},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Optimize
            })
168
        block._insert_op_without_sync(
169
            update_loss_scaling_op_idx + 2,
170
            type='cast',
171
            inputs={'X': inf_var_int32},
172 173
            outputs={'Out': inf_var_sharding},
            attrs={
174
                "in_dtype": inf_var_int32.dtype,
175 176 177 178
                "out_dtype": inf_var_sharding.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })
        block._sync_with_cpp()
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    # TODO (JZ-LIANG) revise this for uniform mixed parallelism
    @staticmethod
    def sync_amp_check_nan_inf(block, ring_id):
        update_loss_scaling_op_idx = -1

        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == "update_loss_scaling":
                update_loss_scaling_op_idx = idx
                inf_var_name = op.desc.input('FoundInfinite')[0]
                op._rename_input(inf_var_name, inf_var_name + "@GLOBAL_WORLD")

        # not use amp
        if update_loss_scaling_op_idx == -1:
            return
        inf_var = block.var(inf_var_name)
        inf_var_int32 = block.create_var(
            name=inf_var_name + "@cast_int32",
            shape=inf_var.shape,
            dtype=core.VarDesc.VarType.INT32)
        inf_var_global = block.create_var(
            name=inf_var_name + "@GLOBAL_WORLD",
            shape=inf_var.shape,
            dtype=inf_var.dtype)
        block._insert_op_without_sync(
            update_loss_scaling_op_idx,
            type='cast',
            inputs={'X': inf_var},
            outputs={'Out': inf_var_int32},
            attrs={
                "in_dtype": inf_var.dtype,
                "out_dtype": inf_var_int32.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })
        block._insert_op_without_sync(
            update_loss_scaling_op_idx + 1,
            type='c_allreduce_max',
            inputs={'X': inf_var_int32},
            outputs={'Out': inf_var_int32},
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Optimize
            })
        block._insert_op_without_sync(
            update_loss_scaling_op_idx + 2,
            type='cast',
            inputs={'X': inf_var_int32},
            outputs={'Out': inf_var_global},
            attrs={
                "in_dtype": inf_var_int32.dtype,
                "out_dtype": inf_var_global.dtype,
                OP_ROLE_KEY: OpRole.Optimize
            })
        block._sync_with_cpp()