activation_mkldnn_op.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/operators/mkldnn/softplus_mkldnn_op.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

28 29 30
namespace paddle {
namespace operators {

31 32
using framework::DataLayout;
using framework::Tensor;
33 34 35
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
36 37 38
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
39

40 41 42 43 44 45
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor"));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor"));
52 53 54 55 56

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
57

58 59 60 61 62 63
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
64
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
65 66
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input OutGrad tensor"));
A
Adam 已提交
67
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef,
68 69
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input OutGrad tensor"));
70 71 72 73 74 75 76 77

    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
78
                     dnnl::algorithm algorithm) {
79 80 81
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Operator DNNL eletwise_forward must use CPUPlace"));
82
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
83
  const auto &mkldnn_engine = dev_ctx.GetEngine();
84

85 86
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
87

88
  bool is_inplaced = x->IsSharedBufferWith(*y);
89

90 91
  platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
                                               ctx.GetPlace(), x);
92

93
  auto src_memory_p = handler.AcquireSrcMemory(x);
94 95 96 97 98 99 100
  std::shared_ptr<dnnl::memory> dst_memory_p = nullptr;
  if (is_inplaced) {
    dst_memory_p = src_memory_p;
    y->mutable_data<T>(ctx.GetPlace());
  } else {
    dst_memory_p = handler.AcquireDstMemory(y);
  }
A
Adam 已提交
101
  auto activation_p = handler.AcquireForwardPrimitive();
102

103
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
104 105
  activation_p->execute(
      astream, {{DNNL_ARG_FROM, *src_memory_p}, {DNNL_ARG_TO, *dst_memory_p}});
A
Adam 已提交
106
  astream.wait();
107

108
  y->set_layout(DataLayout::kMKLDNN);
109
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
110 111
}

112 113
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
114
                  dnnl::algorithm algorithm) {
115
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
116
  const auto &mkldnn_engine = dev_ctx.GetEngine();
117

118
  const auto *x = ctx.Input<Tensor>("X");
119 120
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
121

122 123
  platform::ActivationMKLDNNHandler<T> handler(algorithm, ctx, mkldnn_engine,
                                               ctx.GetPlace(), x, diff_y);
124

125 126 127
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
A
Adam 已提交
128 129
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

130
  auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
131
  activation_backward_p->execute(astream,
132 133 134
                                 {{DNNL_ARG_SRC, *src_memory_p},
                                  {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
135
  astream.wait();
136

137
  diff_x->set_layout(DataLayout::kMKLDNN);
138
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
139 140
}

141
template <typename T, dnnl::algorithm algorithm>
142
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
143
  void operator()(const framework::ExecutionContext &ctx) const {
144 145 146 147
    eltwise_forward<T>(ctx, algorithm);
  }
};

148
template <typename T, dnnl::algorithm algorithm>
149
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
150
  void operator()(const framework::ExecutionContext &ctx) const {
151 152 153 154
    eltwise_grad<T>(ctx, algorithm);
  }
};

A
Adam 已提交
155 156 157 158 159
template <typename T>
struct GeluMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
160
      eltwise_forward<T>(ctx, dnnl::algorithm::eltwise_gelu_tanh);
A
Adam 已提交
161
    } else {
162
      eltwise_forward<T>(ctx, dnnl::algorithm::eltwise_gelu_erf);
A
Adam 已提交
163 164 165 166 167 168 169 170 171
    }
  }
};

template <typename T>
struct GeluMKLDNNGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
172
      eltwise_grad<T>(ctx, dnnl::algorithm::eltwise_gelu_tanh);
A
Adam 已提交
173
    } else {
174
      eltwise_grad<T>(ctx, dnnl::algorithm::eltwise_gelu_erf);
A
Adam 已提交
175 176 177 178
    }
  }
};

179 180 181 182 183 184 185
template <typename T>
struct SoftplusMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    custom_softplus_eltwise_forward<T>(ctx);
  }
};

186
template <typename T>
T
tensor-tang 已提交
187
using ReluMKLDNNFunctor =
188
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_relu>;
189

A
Adam 已提交
190 191
template <typename T>
using Relu6MKLDNNFunctor =
192
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_bounded_relu>;
A
Adam 已提交
193

194 195
template <typename T>
using SwishMKLDNNFunctor =
196
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_swish>;
197

J
jakpiase 已提交
198 199
template <typename T>
using HardSwishMKLDNNFunctor =
200
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_hardswish>;
J
jakpiase 已提交
201

202 203
template <typename T>
using SigmoidMKLDNNFunctor =
204
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_logistic>;
205

206
template <typename T>
T
tensor-tang 已提交
207
using TanhMKLDNNFunctor =
208
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_tanh>;
209 210

template <typename T>
T
tensor-tang 已提交
211
using SqrtMKLDNNFunctor =
212
    MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_sqrt>;
213 214

template <typename T>
215
using AbsMKLDNNFunctor = MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_abs>;
216

J
jakpiase 已提交
217
template <typename T>
218
using EluMKLDNNFunctor = MKLDNNActivationFunc<T, dnnl::algorithm::eltwise_elu>;
J
jakpiase 已提交
219

220
template <typename T>
T
tensor-tang 已提交
221
using ReluMKLDNNGradFunctor =
222
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_relu>;
223

A
Adam 已提交
224 225
template <typename T>
using Relu6MKLDNNGradFunctor =
226
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_bounded_relu>;
A
Adam 已提交
227

228 229
template <typename T>
using SwishMKLDNNGradFunctor =
230
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_swish>;
231

J
jakpiase 已提交
232 233
template <typename T>
using HardSwishMKLDNNGradFunctor =
234
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_hardswish>;
J
jakpiase 已提交
235

236 237
template <typename T>
using SigmoidMKLDNNGradFunctor =
238
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_logistic>;
239

240
template <typename T>
T
tensor-tang 已提交
241
using TanhMKLDNNGradFunctor =
242
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_tanh>;
243 244

template <typename T>
T
tensor-tang 已提交
245
using SqrtMKLDNNGradFunctor =
246
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_sqrt>;
247 248

template <typename T>
T
tensor-tang 已提交
249
using AbsMKLDNNGradFunctor =
250
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_abs>;
J
jakpiase 已提交
251 252 253

template <typename T>
using EluMKLDNNGradFunctor =
254
    MKLDNNActivationGradFunc<T, dnnl::algorithm::eltwise_elu>;
255 256 257 258 259 260 261 262 263 264 265 266
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

267 268 269 270 271 272 273 274
#define REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(act_type, functor,             \
                                               grad_functor)                  \
  REGISTER_OP_KERNEL(                                                         \
      act_type, MKLDNN, ::paddle::platform::CPUPlace,                         \
      ops::MKLDNNActivationKernel<ops::functor<float>>,                       \
      ops::MKLDNNActivationKernel<ops::functor<paddle::platform::bfloat16>>); \
  REGISTER_OP_KERNEL(                                                         \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,                  \
275 276 277
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>,              \
      ops::MKLDNNActivationGradKernel<                                        \
          ops::grad_functor<paddle::platform::bfloat16>>);
278

J
jakpiase 已提交
279 280 281 282 283 284 285 286 287
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                            \
  __macro(relu6, Relu6MKLDNNFunctor, Relu6MKLDNNGradFunctor);              \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);           \
  __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor);              \
  __macro(hard_swish, HardSwishMKLDNNFunctor, HardSwishMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);                 \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);                 \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);                    \
  __macro(elu, EluMKLDNNFunctor, EluMKLDNNGradFunctor);
288 289

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
A
arlesniak 已提交
290 291
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(relu, ReluMKLDNNFunctor,
                                       ReluMKLDNNGradFunctor);
292 293
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(gelu, GeluMKLDNNFunctor,
                                       GeluMKLDNNGradFunctor);
294 295
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(sigmoid, SigmoidMKLDNNFunctor,
                                       SigmoidMKLDNNGradFunctor);
296 297 298 299 300

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
    softplus, MKLDNN, paddle::platform::CPUPlace,
    ops::MKLDNNActivationKernel<ops::SoftplusMKLDNNFunctor<float>>);