activation_mkldnn_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29

30 31 32 33 34 35
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
36 37
    PADDLE_ENFORCE_EQ(x->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for X tensor");
A
Adam 已提交
38
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
39
                      "Wrong format set for X tensor");
40 41 42 43 44

    Functor functor;
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
45

46 47 48 49 50 51
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
52 53
    PADDLE_ENFORCE_EQ(diff_y->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input OutGrad tensor");
A
Adam 已提交
54
    PADDLE_ENFORCE_NE(diff_y->format(), MKLDNNMemoryFormat::undef,
55
                      "Wrong format set for Input OutGrad tensor");
56 57 58 59 60 61 62 63

    Functor functor;
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
A
Adam 已提交
64
                     mkldnn::algorithm algorithm) {
65 66 67
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                    paddle::platform::errors::PreconditionNotMet(
                        "Operator DNNL eletwise_forward must use CPUPlace"));
68 69
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

70 71
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
72

73 74 75 76 77 78 79
  T alpha = ctx.HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  T beta = ctx.HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

  // paddle uses beta but mkldnn uses alpha for swish
  if (algorithm == mkldnn::algorithm::eltwise_swish) {
    std::swap(alpha, beta);
  }
A
Adam 已提交
80

Y
Yihua Xu 已提交
81 82 83 84
  PADDLE_ENFORCE(
      x->dims().size() == 2 || x->dims().size() == 3 || x->dims().size() == 4,
      "Input dim must be with 2, 3 or 4");

A
Adam 已提交
85
  auto src_tz = framework::vectorize<int64_t>(x->dims());
86

87
  auto src_format = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
88

89
  platform::ActivationMKLDNNHandler<T> handler(
90 91
      src_tz, algorithm, alpha, beta, src_format, dev_ctx, ctx.GetPlace(),
      ctx.InputName("X"));
92

93
  auto src_memory_p = handler.AcquireSrcMemory(x);
94 95
  auto dst_memory_p =
      x->IsSharedBufferWith(*y) ? src_memory_p : handler.AcquireDstMemory(y);
A
Adam 已提交
96
  auto activation_p = handler.AcquireForwardPrimitive();
97

A
Adam 已提交
98 99 100 101
  mkldnn::stream astream(dev_ctx.GetEngine());
  activation_p->execute(astream, {{MKLDNN_ARG_FROM, *src_memory_p},
                                  {MKLDNN_ARG_TO, *dst_memory_p}});
  astream.wait();
102

103
  y->set_layout(DataLayout::kMKLDNN);
104
  y->set_format(GetMKLDNNFormat(*dst_memory_p));
105 106
}

107 108
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
A
Adam 已提交
109
                  mkldnn::algorithm algorithm) {
110 111
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

112
  const auto *x = ctx.Input<Tensor>("X");
113 114
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
115

116 117 118 119 120 121 122
  T alpha = ctx.HasAttr("alpha") ? ctx.Attr<T>("alpha") : 0;
  T beta = ctx.HasAttr("beta") ? ctx.Attr<T>("beta") : 0;

  // paddle uses beta but mkldnn uses alpha for swish
  if (algorithm == mkldnn::algorithm::eltwise_swish) {
    std::swap(alpha, beta);
  }
A
Adam 已提交
123

A
Adam 已提交
124
  auto diff_dst_tz = framework::vectorize<int64_t>(diff_y->dims());
K
Krzysztof Binias 已提交
125

126 127
  // diff_dst and src dims should be the same
  auto src_format =
128
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : x->format();
129

130
  auto diff_y_format =
131
      diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : diff_y->format();
132

133 134
  platform::ActivationMKLDNNHandler<T> handler(
      diff_dst_tz, algorithm, alpha, beta, src_format, diff_y_format, dev_ctx,
H
hong 已提交
135
      ctx.GetPlace(), ctx.InputName("X"));
136

137 138 139
  auto src_memory_p = handler.AcquireBackwardSrcMemory(x);
  auto diff_dst_memory_p = handler.AcquireDiffDstMemory(diff_y);
  auto diff_src_memory_p = handler.AcquireDiffSrcMemory(diff_x);
A
Adam 已提交
140 141 142 143 144 145 146 147
  auto activation_backward_p = handler.AcquireBackwardPrimitive();

  mkldnn::stream astream(dev_ctx.GetEngine());
  activation_backward_p->execute(astream,
                                 {{MKLDNN_ARG_SRC, *src_memory_p},
                                  {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                                  {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
  astream.wait();
148

149
  diff_x->set_layout(DataLayout::kMKLDNN);
150
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory_p));
151 152 153 154
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
155
  void operator()(const framework::ExecutionContext &ctx) const {
156 157 158 159 160 161
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
162
  void operator()(const framework::ExecutionContext &ctx) const {
163 164 165 166
    eltwise_grad<T>(ctx, algorithm);
  }
};

A
Adam 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <typename T>
struct GeluMKLDNNFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_forward<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

template <typename T>
struct GeluMKLDNNGradFunctor : public BaseActivationFunctor<T> {
  void operator()(const framework::ExecutionContext &ctx) const {
    const bool approximate = ctx.Attr<bool>("approximate");
    if (approximate) {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_tanh);
    } else {
      eltwise_grad<T>(ctx, mkldnn::algorithm::eltwise_gelu_erf);
    }
  }
};

191
template <typename T>
T
tensor-tang 已提交
192
using ReluMKLDNNFunctor =
193 194
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

195 196 197 198
template <typename T>
using SwishMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_swish>;

199 200 201 202
template <typename T>
using SigmoidMKLDNNFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_logistic>;

203
template <typename T>
T
tensor-tang 已提交
204
using TanhMKLDNNFunctor =
205 206 207
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
208
using SqrtMKLDNNFunctor =
209 210 211
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
212
using AbsMKLDNNFunctor =
213 214 215
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
216
using ReluMKLDNNGradFunctor =
217 218
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

219 220 221 222
template <typename T>
using SwishMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_swish>;

223 224 225 226
template <typename T>
using SigmoidMKLDNNGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_logistic>;

227
template <typename T>
T
tensor-tang 已提交
228
using TanhMKLDNNGradFunctor =
229 230 231
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
232
using SqrtMKLDNNGradFunctor =
233 234 235
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
236
using AbsMKLDNNGradFunctor =
237 238 239 240 241 242 243 244 245 246 247 248 249
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

250 251 252 253 254 255 256 257
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)                     \
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);          \
  __macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor);    \
  __macro(gelu, GeluMKLDNNFunctor, GeluMKLDNNGradFunctor);          \
  __macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor);       \
  __macro(sigmoid, SigmoidMKLDNNFunctor, SigmoidMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor);          \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor);          \
T
tensor-tang 已提交
258
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
259 260

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);