test_functional_conv2d_transpose.py 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
From00 已提交
15
import unittest
16 17
from unittest import TestCase

F
From00 已提交
18
import numpy as np
19 20

import paddle
21 22
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
F
From00 已提交
23 24
import paddle.nn.functional as F
from paddle import fluid
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


class TestFunctionalConv2D(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"
43
        np.random.seed(2022)
44 45 46

    def prepare(self):
        if isinstance(self.filter_shape, int):
47
            filter_shape = (self.filter_shape,) * 2
48 49 50 51
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
52 53 54 55
            -1,
            1,
            (self.in_channels, self.out_channels // self.groups) + filter_shape,
        ).astype(self.dtype)
56
        if not self.no_bias:
57 58 59
            self.bias = np.random.uniform(-1, 1, (self.out_channels,)).astype(
                self.dtype
            )
60

61
        self.channel_last = self.data_format == "NHWC"
62
        if self.channel_last:
63 64 65
            self.input_shape = (
                (self.batch_size,) + self.spatial_shape + (self.in_channels,)
            )
66
        else:
67 68 69 70
            self.input_shape = (
                self.batch_size,
                self.in_channels,
            ) + self.spatial_shape
71

72 73 74
        self.input = np.random.uniform(-1, 1, self.input_shape).astype(
            self.dtype
        )
75 76 77 78 79 80 81

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
82 83 84 85 86
                    x = fluid.data(
                        "input",
                        (-1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
87
                else:
88 89 90 91 92
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1),
                        dtype=self.dtype,
                    )
93
                y = paddle.static.nn.conv2d_transpose(
94 95 96 97 98 99 100 101 102 103
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
104 105 106 107
                    if self.no_bias
                    else I.NumpyArrayInitializer(self.bias),
                    data_format=self.data_format,
                )
108 109
        exe = fluid.Executor(self.place)
        exe.run(start)
110
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
111 112 113 114 115 116 117 118
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
119 120 121 122 123
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
124
                else:
125 126 127 128 129 130 131 132
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype
                )
133 134
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
135 136 137 138 139 140 141 142 143 144 145
                y = F.conv2d_transpose(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
146 147 148 149 150
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
151
        (out,) = exe.run(main, feed=feed_dict, fetch_list=[y])
152 153 154 155 156 157 158
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
159 160 161 162 163 164 165 166 167 168 169
            y = F.conv2d_transpose(
                x,
                weight,
                bias,
                output_size=self.output_size,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

185 186 187
    @unittest.skipIf(
        not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()


class TestFunctionalConv2DError(TestCase):
    batch_size = 4
    spatial_shape = (16, 16)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"
209
        np.random.seed(2022)
210 211 212 213 214 215 216 217

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
218
            filter_shape = (self.filter_shape,) * 2
219 220
        else:
            filter_shape = tuple(self.filter_shape)
221 222 223 224 225
        self.weight_shape = (
            self.in_channels,
            self.out_channels // self.groups,
        ) + filter_shape
        self.bias_shape = (self.out_channels,)
226 227 228 229 230 231 232 233

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NHWC"
                if self.channel_last:
234 235 236 237 238
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
239
                else:
240 241 242 243 244 245 246 247
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype
                )
248 249
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
250 251 252 253 254 255 256 257 258 259 260
                y = F.conv2d_transpose(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498


class TestFunctionalConv2DCase2(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase3(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = True
        self.data_format = "NCHW"


class TestFunctionalConv2DCase4(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase5(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase6(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = (2, 1)
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase7(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase8(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = [18, 34]
        self.stride = (1, 2)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase9(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DCase10(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase11(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DCase12(TestFunctionalConv2D):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase2(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase3(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NHWC"


class TestFunctionalConv2DErrorCase4(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase5(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase7(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "NCHW"


class TestFunctionalConv2DErrorCase8(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.data_format = "not_valid"


class TestFunctionalConv2DErrorCase9(TestFunctionalConv2DError):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.data_format = "NCHW"


499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
class TestFunctionalConv2DErrorCase10(TestCase):
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
518
                y = paddle.static.nn.conv2d(
519 520 521 522 523 524 525 526 527 528 529 530 531 532
                    x,
                    self.num_filters,
                    self.filter_size,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.filter),
                    bias_attr=False
                    if self.bias is None
                    else I.NumpyArrayInitializer(self.bias),
                    act=None,
                    data_format=self.data_format,
                )
533 534
        exe = fluid.Executor()
        exe.run(start)
535
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
536 537 538 539 540 541
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
            b = (
                None
                if self.bias is None
                else dg.to_variable(self.bias, dtype=paddle.float32)
            )
            y = F.conv2d_transpose(
                x,
                w,
                b,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv2DErrorCase11(TestFunctionalConv2DErrorCase10):
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCHW"


581 582
if __name__ == "__main__":
    unittest.main()