pull_dense_worker.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include "paddle/fluid/framework/device_worker.h"

namespace paddle {
namespace framework {

20
class Tensor;
21 22 23
class Scope;
class Variable;

24
std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
25 26 27 28 29 30
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
31 32 33 34

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
35
  dwp_param_ = param.downpour_param();
36 37 38
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
39 40
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
41 42 43 44 45 46 47 48 49
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
50
    // setup dense variables for each table
H
heqiaozhi 已提交
51
    int var_num = table.dense_value_name_size();
52 53
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
54
      dense_value_names_[tid][j] = table.dense_value_name(j);
55 56 57 58 59 60
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
61
  fleet_ptr_ = FleetWrapper::GetInstance();
62
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
63
  copy_streams_.clear();
T
Thunderbrook 已提交
64
#endif
65 66
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
67 68 69 70 71 72
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
73 74
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
90 91
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
T
Thunderbrook 已提交
92 93 94 95
#endif
#ifdef PADDLE_WITH_XPU
      pin_tensor->mutable_data<float>(tensor->dims(), platform::CPUPlace());
#endif
T
Thunderbrook 已提交
96 97 98
    }
  }
#endif
99 100 101 102 103 104 105 106 107 108 109 110
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

111
  size_t MAX_FAIL_NUM = 20;
112
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
113 114
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
115 116
    exit(-1);
  }
117
  status_vec->resize(0);
118 119
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
138 139 140
        memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, places_[i]), w,
                     platform::CUDAPinnedPlace(), pin_w,
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
T
Thunderbrook 已提交
141 142 143 144 145 146
#endif
#ifdef PADDLE_WITH_XPU
        memory::Copy(BOOST_GET_CONST(platform::XPUPlace, places_[i]), w,
                     platform::CPUPlace(), pin_w,
                     sizeof(float) * tensor->numel());
#endif
T
Thunderbrook 已提交
147 148 149 150
      }
    }
  }
#endif
151 152 153 154 155 156 157 158 159
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

160 161
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
162 163
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
164 165 166
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
167 168
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
169
      VLOG(3) << "pull dense " << force_update << " " << tid;
170
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
171 172 173 174 175
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
176 177 178 179 180 181 182 183
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

184 185
int PullDenseWorker::Start() {
  running_ = true;
186 187
  // before training, we can pull dense from pserver first.
  PullDense(true);
188 189 190 191 192 193
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
194
    PullDense(false);
D
dongdaxiang 已提交
195
#ifndef _WIN32
196
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
197
#endif
198 199 200 201 202 203 204 205 206 207 208 209 210
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
211 212
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
213 214 215 216 217 218 219 220 221 222
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

223 224 225 226 227 228 229 230 231 232 233
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

T
Thunderbrook 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
void PullDenseWorker::MergeDenseParam() {
  for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++x) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(x));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];

      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scopes_[0]->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
}

251 252
}  // namespace framework
}  // namespace paddle