pull_dense_worker.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include "paddle/fluid/framework/device_worker.h"

namespace paddle {
namespace framework {

20 21 22 23
class LoDTensor;
class Scope;
class Variable;

24
std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
25 26 27 28 29 30
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
31 32 33 34

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
35
  dwp_param_ = param.downpour_param();
36 37 38
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
39 40
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
41 42 43 44 45 46 47 48 49
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
50
    // setup dense variables for each table
H
heqiaozhi 已提交
51
    int var_num = table.dense_value_name_size();
52 53
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
54
      dense_value_names_[tid][j] = table.dense_value_name(j);
55 56 57 58 59 60
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
61
  fleet_ptr_ = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
62 63
#ifdef PADDLE_WITH_CUDA
  copy_streams_.clear();
T
Thunderbrook 已提交
64 65
#endif
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
66 67 68 69 70 71
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
72
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
T
Thunderbrook 已提交
87
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
88 89
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
T
Thunderbrook 已提交
90 91 92 93
#endif
#ifdef PADDLE_WITH_XPU
      pin_tensor->mutable_data<float>(tensor->dims(), platform::CPUPlace());
#endif
T
Thunderbrook 已提交
94 95 96
    }
  }
#endif
97 98 99 100 101 102 103 104 105 106 107 108
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

109
  size_t MAX_FAIL_NUM = 20;
110
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
111 112
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
113 114
    exit(-1);
  }
115
  status_vec->resize(0);
T
Thunderbrook 已提交
116
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
T
Thunderbrook 已提交
134
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
135 136 137
        memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, places_[i]), w,
                     platform::CUDAPinnedPlace(), pin_w,
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
T
Thunderbrook 已提交
138 139 140 141 142 143
#endif
#ifdef PADDLE_WITH_XPU
        memory::Copy(BOOST_GET_CONST(platform::XPUPlace, places_[i]), w,
                     platform::CPUPlace(), pin_w,
                     sizeof(float) * tensor->numel());
#endif
T
Thunderbrook 已提交
144 145 146 147
      }
    }
  }
#endif
148 149 150 151 152 153 154 155 156
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

157 158
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
159 160
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
161 162 163
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
T
Thunderbrook 已提交
164
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
165
      VLOG(3) << "pull dense " << force_update << " " << tid;
166
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
167 168 169 170 171
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
172 173 174 175 176 177 178 179
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

180 181
int PullDenseWorker::Start() {
  running_ = true;
182 183
  // before training, we can pull dense from pserver first.
  PullDense(true);
184 185 186 187 188 189
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
190
    PullDense(false);
D
dongdaxiang 已提交
191
#ifndef _WIN32
192
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
193
#endif
194 195 196 197 198 199 200 201 202 203 204 205 206
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
207 208
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
209 210 211 212 213 214 215 216 217 218
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

219 220 221 222 223 224 225 226 227 228 229
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

T
Thunderbrook 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
void PullDenseWorker::MergeDenseParam() {
  for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++x) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(x));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];

      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scopes_[0]->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
}

247 248
}  // namespace framework
}  // namespace paddle