nn.py 133.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
36

37
__all__ = [
38
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
39 40
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
41
    'SpectralNorm', 'TreeConv', 'Flatten'
42
]
M
minqiyang 已提交
43 44


X
Xin Pan 已提交
45
class Conv2D(layers.Layer):
46
    r"""
47 48
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
49 50 51
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
52 53 54
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
55
    and W is the width of the filter. If the groups is greater than 1,
56
    C will equal the number of input feature map divided by the groups.
57
    Please refer to UFLDL's `convolution
58
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
59
    for more details.
60 61 62 63 64 65 66 67
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

68
        Out = \\sigma (W \\ast X + b)
69 70 71

    Where:

72 73
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
74
    * :math:`\\ast`: Convolution operation.
75
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

98
    Parameters:
99
        num_channels(int): The number of channels in the input image.
100
        num_filters(int): The number of filter. It is as same as the output
101 102
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
103 104
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
105
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
106
            contain two integers, (stride_H, stride_W). Otherwise, the
107 108
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
109
            contain two integers, (padding_H, padding_W). Otherwise, the
110 111
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
112
            contain two integers, (dilation_H, dilation_W). Otherwise, the
113
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
114
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
115 116 117
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
118 119
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
120 121 122 123
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
124
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
125 126 127 128
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
129 130 131 132 133
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
134

135 136 137 138
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
139

140 141 142
    Returns:
        None
    
143
    Raises:
144
        ValueError: if ``use_cudnn`` is not a bool value.
145 146 147

    Examples:
        .. code-block:: python
L
lujun 已提交
148

149 150 151 152 153
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

154
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
155
          with fluid.dygraph.guard():
156
              conv2d = Conv2D(3, 2, 3)
157 158
              data = to_variable(data)
              conv = conv2d(data)
159 160 161

    """

M
minqiyang 已提交
162
    def __init__(self,
163
                 num_channels,
M
minqiyang 已提交
164 165 166 167 168 169 170 171
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
172 173 174
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
175
        assert param_attr is not False, "param_attr should not be False here."
176
        super(Conv2D, self).__init__()
177 178 179 180 181

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

182
        self._num_channels = num_channels
M
minqiyang 已提交
183 184 185 186
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
187
        self._act = act
M
minqiyang 已提交
188 189 190
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
191
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
192 193 194 195 196
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
197

198
        if (self._num_channels == self._groups and
199 200
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
201 202 203
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
204

205
        self._num_channels = num_channels
206 207
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
208
        else:
209
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
210
                raise ValueError("num_channels must be divisible by groups.")
211 212
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
213
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
214 215

        def _get_default_param_initializer():
216 217
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
218 219 220
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

221
        self.weight = self.create_parameter(
222
            attr=self._param_attr,
M
minqiyang 已提交
223 224 225 226
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

227
        self.bias = self.create_parameter(
228 229
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
230 231
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
232 233

    def forward(self, input):
234 235 236
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
237 238
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
239 240 241
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

242 243 244 245
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
246 247
        inputs = {
            'Input': [input],
248
            'Filter': [self.weight],
249 250 251 252 253 254 255
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
256
            'use_mkldnn': self._use_mkldnn,
257
        }
258 259 260

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
261 262 263
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
264 265 266 267
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
268
                'Filter': self.weight,
M
minqiyang 已提交
269
            },
M
minqiyang 已提交
270
            outputs={"Output": pre_bias},
271
            attrs=attrs)
M
minqiyang 已提交
272

273
        if self.bias is not None:
274 275 276 277 278
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
279
                        'Y': [self.bias]},
280
                outputs={'Out': [pre_act]},
281 282
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
283 284
        else:
            pre_act = pre_bias
M
minqiyang 已提交
285

L
lujun 已提交
286
        # Currently, we don't support inplace in dygraph mode
287
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
288 289


L
lujun 已提交
290
class Conv3D(layers.Layer):
291
    r"""
292 293 294 295
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
296 297
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
298 299 300 301 302 303 304 305 306 307 308 309 310 311
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
312
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

338
    Parameters:
339
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
340
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
341
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
342
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
343 344 345
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
346
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
347 348
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
349
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
350 351
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
352
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
353
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
354
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
355 356 357
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
358 359
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
360 361 362
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
363 364
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
365 366 367
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
368 369 370 371 372
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
373
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
374

D
DuYao 已提交
375 376 377 378
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
379

380
    Returns:
D
DuYao 已提交
381
        None.
382 383 384 385 386 387 388 389

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

390 391 392 393 394 395
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
396
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
397 398
              ret = conv3d(fluid.dygraph.base.to_variable(data))

399 400
    """

L
lujun 已提交
401
    def __init__(self,
402
                 num_channels,
L
lujun 已提交
403 404 405 406 407 408 409 410 411
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
412 413
                 act=None,
                 dtype='float32'):
L
lujun 已提交
414
        assert param_attr is not False, "param_attr should not be False here."
415 416
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
417 418 419
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
420
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
421 422
        self._act = act
        self._use_cudnn = use_cudnn
423 424 425 426
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
427
        self._dtype = dtype
428 429

        if self._groups is None:
430
            num_filter_channels = self._num_channels
L
lujun 已提交
431
        else:
432
            if self._num_channels % self._groups != 0:
L
lujun 已提交
433
                raise ValueError("num_channels must be divisible by groups.")
434
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
435

436 437
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
438 439 440

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
441
                2] * self._num_channels
L
lujun 已提交
442 443 444
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

445
        self.weight = self.create_parameter(
446
            attr=self._param_attr,
L
lujun 已提交
447 448 449 450
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

451
        self.bias = self.create_parameter(
452 453
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
454 455 456 457 458 459 460 461
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
462
            type='conv3d',
L
lujun 已提交
463 464
            inputs={
                'Input': input,
465
                'Filter': self.weight,
L
lujun 已提交
466 467 468 469 470 471 472 473 474 475 476
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

477
        if self.bias is not None:
478 479 480 481 482
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
483
                        'Y': [self.bias]},
484 485 486 487
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
488 489 490 491 492

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
493
    r"""
L
lujun 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
558

559
    Parameters:
560
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
561 562
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
563
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
564
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
565
            Otherwise, the filter will be a square.
D
DuYao 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
581
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
582
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
583
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
584 585 586 587
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
588 589
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
590 591
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
592 593
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
594 595 596
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
597 598 599 600 601 602 603
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
604

D
DuYao 已提交
605 606 607 608
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
609

L
lujun 已提交
610
    Returns:
D
DuYao 已提交
611
        None.
L
lujun 已提交
612 613 614 615 616 617 618 619

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

620 621 622 623 624 625
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
626
                    num_channels=3,
627 628 629 630 631
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
632 633
    """

L
lujun 已提交
634
    def __init__(self,
635
                 num_channels,
L
lujun 已提交
636
                 num_filters,
637
                 filter_size,
L
lujun 已提交
638 639 640 641 642 643 644 645
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
646 647
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
648 649 650 651 652 653 654
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
655
        self._num_channels = num_channels
L
lujun 已提交
656 657 658 659 660 661
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
662
        self._dtype = dtype
L
lujun 已提交
663

664 665
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
666

667 668
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
669
        self.weight = self.create_parameter(
L
lujun 已提交
670
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
671 672 673 674 675
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
676 677 678 679 680 681 682

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
683
                    'Filter': [self.weight]},
L
lujun 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
699
                        'Y': [self.bias]},
L
lujun 已提交
700 701 702 703 704 705 706 707 708
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
709
class Pool2D(layers.Layer):
710
    r"""
711

712 713 714 715 716
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
717 718
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

764
    Parameters:
765
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
766
            it must contain two integers, (pool_size_Height, pool_size_Width).
767 768 769 770
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
771
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
772 773 774
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
775
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
776 777 778 779 780 781 782
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
783 784 785 786
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
787 788

    Returns:
789
        None
790 791

    Raises:
792 793 794 795
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
796 797 798 799 800

    Examples:

        .. code-block:: python

L
lujun 已提交
801
          import paddle.fluid as fluid
802 803
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
804 805

          with fluid.dygraph.guard():
806
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
807
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
808 809 810
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
811
             pool2d_res = pool2d(to_variable(data))
812 813 814

    """

M
minqiyang 已提交
815 816 817 818 819 820 821 822
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
823 824 825 826
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

840
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
841

842 843 844 845 846
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

847
        super(Pool2D, self).__init__()
M
minqiyang 已提交
848 849 850 851 852 853 854 855 856 857

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
858
        self._data_format = data_format
M
minqiyang 已提交
859 860 861
        self._l_type = 'pool2d'

    def forward(self, input):
862 863 864 865 866
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
867 868
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
869 870
            return core.ops.pool2d(input, *attrs)

871 872 873 874
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

875 876 877 878 879 880 881 882
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
883
            "use_mkldnn": self._use_mkldnn,
884
            "exclusive": self._exclusive,
885
            "data_format": self._data_format,
886 887 888
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
889 890
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
891 892 893
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
894
            outputs={"Out": pool_out},
895
            attrs=attrs)
M
minqiyang 已提交
896
        return pool_out
M
minqiyang 已提交
897 898


S
songyouwei 已提交
899 900
class Linear(layers.Layer):
    """
901
    
S
songyouwei 已提交
902 903 904 905 906 907 908 909
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

910
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

969
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
970

S
songyouwei 已提交
971
    def forward(self, input):
972
        if in_dygraph_mode():
973 974
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
975 976
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
977
            pre_act = dygraph_utils._append_bias_in_dygraph(
978 979 980 981
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
982

983 984
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
985 986 987 988

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

989
        attrs = {
S
songyouwei 已提交
990 991 992
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
993
            "use_mkldnn": self._use_mkldnn,
994 995
        }
        inputs = {"X": [input], "Y": [self.weight]}
996

S
songyouwei 已提交
997 998
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
999
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
1000
        if self.bias is not None:
S
songyouwei 已提交
1001 1002 1003 1004 1005 1006 1007
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1008 1009 1010 1011
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1012 1013 1014 1015 1016
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1017
class InstanceNorm(layers.Layer):
1018
    r"""
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1049
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1050 1051 1052
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1053 1054
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1055 1056 1057
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1058
             If it is set to False, will not create bias_attr. Default: None.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1093 1094
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1095 1096 1097 1098 1099
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1128 1129 1130 1131
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1151
class BatchNorm(layers.Layer):
1152
    r"""
1153 1154 1155 1156
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1157 1158 1159 1160 1161
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1162 1163 1164 1165
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1166 1167 1168
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1169 1170 1171 1172 1173 1174 1175 1176

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1177 1178
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1179 1180 1181

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1182 1183 1184 1185 1186 1187
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1188

1189 1190
    The normalization function formula is as follows:
 
1191 1192 1193
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1194 1195 1196 1197 1198 1199
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1200

1201
    Parameters:
1202
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1203
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1204 1205 1206
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1207 1208 1209
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1210 1211 1212
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1213
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1214 1215 1216
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1217 1218 1219 1220 1221 1222
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1223 1224
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1225
        use_global_stats(bool, optional): Whether to use global mean and
1226 1227 1228
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1229 1230 1231 1232
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1233 1234

    Returns:
1235
        None
1236 1237 1238

    Examples:
        .. code-block:: python
L
lujun 已提交
1239 1240

          import paddle.fluid as fluid
1241 1242
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1243

1244
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1245
          with fluid.dygraph.guard():
1246
              x = to_variable(x)
1247
              batch_norm = fluid.BatchNorm(10)
1248
              hidden1 = batch_norm(x)
1249 1250
    """

M
minqiyang 已提交
1251 1252 1253 1254 1255 1256 1257 1258
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1259
                 dtype='float32',
M
minqiyang 已提交
1260 1261 1262 1263
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1264
                 do_model_average_for_mean_and_var=True,
1265 1266
                 use_global_stats=False,
                 trainable_statistics=False):
1267
        super(BatchNorm, self).__init__()
1268
        self._param_attr = param_attr
1269
        self._bias_attr = bias_attr
1270
        self._act = act
1271
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1272 1273 1274

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1275 1276
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1277 1278 1279 1280 1281 1282
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1283
        self.weight = self.create_parameter(
1284
            attr=self._param_attr,
M
minqiyang 已提交
1285 1286 1287
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1288
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1289

1290
        self.bias = self.create_parameter(
1291
            attr=self._bias_attr,
M
minqiyang 已提交
1292 1293 1294
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1295
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1296

1297
        self._mean = self.create_parameter(
M
minqiyang 已提交
1298 1299 1300 1301 1302 1303 1304
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1305
        self._mean.stop_gradient = True
M
minqiyang 已提交
1306

1307
        self._variance = self.create_parameter(
M
minqiyang 已提交
1308 1309 1310 1311 1312 1313 1314
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1315
        self._variance.stop_gradient = True
M
minqiyang 已提交
1316 1317

        self._in_place = in_place
1318
        self._data_layout = data_layout
M
minqiyang 已提交
1319 1320 1321
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1322
        self._fuse_with_relu = False
M
minqiyang 已提交
1323
        self._use_global_stats = use_global_stats
1324
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1325 1326 1327 1328 1329 1330 1331

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1332 1333 1334

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1335
                     "is_test", not self.training, "data_layout",
1336 1337
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1338 1339
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1340
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1341 1342 1343
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
1344
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1345

1346 1347 1348
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1349 1350 1351 1352 1353 1354 1355
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1356 1357
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1358
        }
M
minqiyang 已提交
1359

1360 1361 1362 1363 1364 1365 1366 1367
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1368 1369 1370 1371
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1372 1373
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1374

1375 1376
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1377 1378 1379 1380 1381 1382 1383 1384

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1385
        if reserve_space is not None:
1386
            outputs["ReserveSpace"] = [reserve_space]
1387

M
minqiyang 已提交
1388
        self._helper.append_op(
1389
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1390

L
lujun 已提交
1391
        # Currently, we don't support inplace in dygraph mode
1392
        return self._helper.append_activation(batch_norm_out, self._act)
1393 1394


1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1474 1475 1476
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1507
class Embedding(layers.Layer):
1508
    r"""
1509 1510 1511 1512
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1513 1514
    **Embedding Layer**

Z
zhongpu 已提交
1515 1516 1517 1518 1519 1520
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1521 1522
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1523

1524
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1525 1526 1527 1528 1529 1530 1531
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1532 1533
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1547

1548
    Parameters:
L
lujun 已提交
1549 1550
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1569
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1570 1571 1572
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1573

Z
zhongpu 已提交
1574 1575
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1576

1577
    Returns:
Z
zhongpu 已提交
1578
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1579 1580

    Examples:
1581

1582 1583
        .. code-block:: python

L
lujun 已提交
1584 1585 1586 1587
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1588
          # example 1
1589 1590
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1591 1592
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1593
              emb = fluid.dygraph.Embedding(
1594 1595 1596
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1597
              static_rlt3 = emb(base.to_variable(inp_word))
1598
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1613 1614
    """

1615 1616 1617 1618 1619 1620 1621
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1622
        super(Embedding, self).__init__()
1623 1624 1625 1626
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1627
            size[0] + padding_idx)
1628 1629 1630

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1631
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1632 1633 1634
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1635
        self.weight = self.create_parameter(
1636 1637 1638 1639 1640 1641
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1642 1643 1644 1645 1646 1647
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1648
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1649 1650 1651 1652 1653 1654
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1655

1656 1657
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1658
            type='lookup_table_v2',
1659
            inputs={'Ids': input,
1660
                    'W': self.weight},
1661
            outputs={'Out': out},
1662
            attrs=attrs)
1663 1664

        return out
M
minqiyang 已提交
1665 1666


1667
class LayerNorm(layers.Layer):
1668
    r"""
1669 1670 1671 1672
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1673 1674 1675
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1676
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1677

1678
    The formula is as follows:
1679

1680
    ..  math::
1681

1682
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1683

1684
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1685

1686
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1687

1688 1689 1690 1691 1692
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1693

1694
    Parameters:
1695 1696 1697 1698
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1699
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1700
            normalization. Default: True.
1701
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1702
            normalization. Default: True.
1703
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1704
            division by zero. Default: 1e-05.
1705
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1706 1707 1708
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1709
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1710
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1711 1712 1713
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1714
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1715
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1716
                  Default: None.
1717 1718
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1719
    Returns:
1720
        None
1721

1722
    Examples:
1723

1724 1725 1726
        .. code-block:: python

          import paddle.fluid as fluid
1727
          from paddle.fluid.dygraph.base import to_variable
1728 1729
          import numpy

1730
          x = numpy.random.random((3, 32, 32)).astype('float32')
1731
          with fluid.dygraph.guard():
1732
              x = to_variable(x)
1733
              layerNorm = fluid.LayerNorm([32, 32])
1734
              ret = layerNorm(x)
1735

1736
    """
1737

1738
    def __init__(self,
1739
                 normalized_shape,
1740 1741 1742 1743 1744
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1745 1746 1747 1748 1749
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1750

1751
        self._normalized_shape = list(normalized_shape)
1752 1753 1754 1755 1756 1757
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1758 1759
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1760
        if self._scale:
1761
            self.weight = self.create_parameter(
1762 1763 1764 1765
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1766 1767
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1768
                logging.warn("param_attr are only available with scale is True")
1769
            self.weight = None
1770

1771 1772
        if self._shift:
            assert self._bias_attr is not False
1773
            self.bias = self.create_parameter(
1774 1775 1776 1777
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1778 1779
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1780
                logging.warn("bias_attr are only available with shift is True")
1781
            self.bias = None
1782 1783

    def forward(self, input):
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1795 1796 1797 1798 1799 1800 1801 1802

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1803 1804 1805
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1806
        inputs = dict()
1807
        inputs['X'] = [input]
1808
        if self._scale:
1809
            inputs['Scale'] = [self.weight]
1810
        if self._shift:
1811 1812 1813 1814 1815 1816
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1838
        return self._helper.append_activation(layer_norm_out, act=self._act)
1839 1840


M
minqiyang 已提交
1841 1842 1843
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1844 1845 1846 1847 1848
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1859
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1885
    Parameters:
L
lujun 已提交
1886
        size (int): The input dimension value.
D
DuYao 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1896 1897 1898 1899


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1900 1901 1902 1903
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1904 1905 1906 1907 1908
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1909
            is initialized zero. The default value is None.
L
lujun 已提交
1910
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1911
                             The default value is 'tanh'.
L
lujun 已提交
1912
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1913 1914 1915
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1916

D
DuYao 已提交
1917 1918 1919 1920
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1921

M
minqiyang 已提交
1922
    Returns:
D
DuYao 已提交
1923 1924 1925 1926
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1940
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1941 1942 1943
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1944
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1945 1946 1947
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1958
        super(GRUUnit, self).__init__()
1959
        self._bias_attr = bias_attr
M
minqiyang 已提交
1960 1961 1962 1963 1964
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1965 1966
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1967

M
minqiyang 已提交
1968
        self._dtype = dtype
M
minqiyang 已提交
1969 1970
        size = size // 3
        # create weight
1971
        self.weight = self.create_parameter(
M
minqiyang 已提交
1972
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1973 1974

        # create bias
M
minqiyang 已提交
1975
        bias_size = [1, 3 * size]
1976
        self._bias_size = bias_size
1977
        self.bias = self.create_parameter(
M
minqiyang 已提交
1978
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1979

M
minqiyang 已提交
1980
    def forward(self, input, hidden):
1981 1982 1983 1984 1985 1986
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1987 1988 1989 1990
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1991 1992 1993 1994 1995
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1996
        if self.bias is not None:
1997
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1998 1999 2000 2001 2002
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2012 2013
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2014 2015 2016
            })

        return updated_hidden, reset_hidden_pre, gate
2017 2018 2019 2020


class NCE(layers.Layer):
    """
2021 2022 2023 2024 2025
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2026
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2027

2028
    Parameters:
2029 2030
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2031
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2032 2033 2034
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2035
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2036 2037 2038 2039
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2040
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2041
        sampler (str, optional): The sampler used to sample class from negative classes.
2042 2043
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2044
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2045
                       It is used when sampler is set to 'custom_dist'.
2046
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2047
                       Default: None.
2048 2049
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2050
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2051

2052 2053
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2054

2055 2056
        **bias** (Parameter or None): the learnable bias of this layer.
    
2057
    Returns:
2058
        None
2059 2060 2061 2062

    Examples:
        .. code-block:: python

2063 2064 2065
            import numpy as np
            import paddle.fluid as fluid

2066
            window_size = 5
2067 2068
            dict_size = 20
            label_word = int(window_size // 2) + 1
2069
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2091
                nce = fluid.NCE(
2092
                             num_total_classes=dict_size,
2093
                             dim=embs3.shape[1],
2094 2095 2096 2097 2098 2099 2100
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2101 2102
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2103 2104 2105 2106 2107

    """

    def __init__(self,
                 num_total_classes,
2108
                 dim,
2109
                 sample_weight=None,
2110 2111 2112 2113 2114 2115
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2116 2117 2118
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2119 2120 2121
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2122
        self._dtype = dtype
2123
        self._inputs = dict()
2124
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2212
        self.weight = self.create_parameter(
2213 2214 2215
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2216
            dtype=self._dtype)
2217
        if self._bias_attr:
2218
            self.bias = self.create_parameter(
2219 2220 2221
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2222
                dtype=self._dtype)
2223 2224
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2225

2226
    def forward(self, input, label, sample_weight=None):
2227 2228 2229 2230
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2258
    r"""
2259 2260 2261 2262
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2263 2264 2265 2266 2267
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2268
    Parameters:
L
lujun 已提交
2269
        mode (str): The mode for weight sharing. It supports all, channel
2270 2271 2272
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2273 2274 2275
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2276
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2277 2278
          This argument is required when mode is "element".
          Default: None.
2279 2280
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2281
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2282

2283 2284 2285
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2286
    Returns:
2287
        None
2288 2289 2290 2291 2292

    Examples:

        .. code-block:: python

L
lujun 已提交
2293
          import paddle.fluid as fluid
2294
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2295 2296 2297 2298
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2299
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2311
                 input_shape=inp_np.shape,
L
lujun 已提交
2312
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2313
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2314

2315 2316
    """

S
songyouwei 已提交
2317 2318 2319 2320 2321
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2322
                 dtype='float32'):
2323 2324
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2325 2326
        self._mode = mode
        self._param_attr = param_attr
2327
        self._dtype = dtype
S
songyouwei 已提交
2328 2329 2330 2331 2332 2333
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2334 2335 2336
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2337 2338
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2339 2340 2341 2342 2343 2344 2345
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2346
        self.weight = self.create_parameter(
2347 2348 2349 2350 2351 2352 2353
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2354
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2355 2356 2357 2358
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2359
                    'Alpha': self.weight},
2360 2361 2362 2363 2364 2365
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
2366
    r"""
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2381
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2382

2383
    Parameters:
2384 2385 2386 2387 2388
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2389 2390 2391 2392
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2393
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2394
           If it is set to None, the bias is initialized zero. The default value is None.
2395
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2396

D
DuYao 已提交
2397 2398 2399 2400
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2401

2402
    Returns:
W
wanghuancoder 已提交
2403
       Tensor: A 2-D Tensor of shape [batch_size, size].
2404 2405 2406 2407

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2417

2418 2419 2420
    """

    def __init__(self,
2421 2422 2423
                 input1_dim,
                 input2_dim,
                 output_dim,
2424 2425 2426
                 name=None,
                 act=None,
                 param_attr=None,
2427 2428 2429
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2430 2431 2432 2433
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2434 2435 2436
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2437
        self._inputs = dict()
2438
        self._dtype = dtype
2439

2440
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2441
        self.weight = self.create_parameter(
2442 2443 2444 2445
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2446
        bias_size = [1, self._output_dim]
2447
        self.bias = self.create_parameter(
2448 2449 2450 2451
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2452

2453 2454 2455 2456
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2457
    def forward(self, x, y):
2458 2459 2460 2461
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2462
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2463
        if self.bias is not None:
2464
            self._inputs["Bias"] = self.bias
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2479
        return self._helper.append_activation(out, act=self._act)
2480 2481 2482


class Conv2DTranspose(layers.Layer):
2483
    r"""
2484 2485
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2486
    The convolution2D transpose layer calculates the output based on the input,
2487 2488 2489
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2490 2491
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2492 2493
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2494 2495 2496
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2497 2498
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2499 2500 2501 2502 2503 2504 2505 2506 2507

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2508 2509
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2510
    * :math:`\\ast`: Convolution operation.
2511
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2536
    Parameters:
2537
        num_channels(int): The number of channels in the input image.
2538
        num_filters(int): The number of the filter. It is as same as the output
2539
            feature map.
2540 2541 2542
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2543
        output_size(int or tuple, optional): The output image size. If output size is a
2544 2545 2546
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2547
            should follow the formula above. Default: None.
2548
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2549
            contain two integers, (padding_H, padding_W). Otherwise, the
2550 2551
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2552
            contain two integers, (stride_H, stride_W). Otherwise, the
2553 2554
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2555
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2556
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2557
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2558 2559 2560 2561
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2562 2563
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2564 2565 2566
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2567
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2568 2569 2570 2571
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2572
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2573
            library is installed. Default: True.
2574
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2575
            Default: None.
2576
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2577

2578 2579
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2580

2581
        **bias** (Parameter or None): the learnable bias of this layer.
2582

2583 2584
    Returns:
        None
2585 2586 2587 2588

    Examples:
       .. code-block:: python

2589
          import paddle.fluid as fluid
2590
          import numpy as np
2591 2592

          with fluid.dygraph.guard():
2593
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2594
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2595
                    num_channels=32, num_filters=2, filter_size=3)
2596 2597
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2598 2599 2600
    """

    def __init__(self,
2601
                 num_channels,
2602
                 num_filters,
2603
                 filter_size,
2604 2605 2606 2607 2608 2609 2610 2611
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2612 2613 2614
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2615 2616 2617
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2618
        self._act = act
2619
        self._groups = groups
2620
        self._num_channels = num_channels
2621 2622 2623 2624 2625 2626 2627
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2628
        self._dtype = dtype
2629

2630 2631 2632
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2633
            self._op_type = 'depthwise_conv2d_transpose'
2634 2635
        else:
            self._op_type = 'conv2d_transpose'
2636 2637 2638 2639 2640

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2641 2642
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2654
        filter_shape = [self._num_channels, self._num_filters // self._groups
2655 2656
                        ] + self._filter_size

2657
        self.weight = self.create_parameter(
2658
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2659

2660
        self.bias = self.create_parameter(
2661 2662 2663 2664 2665
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2666
    def forward(self, input):
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2679 2680 2681 2682
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2693 2694 2695 2696
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2697
            inputs=inputs,
2698
            outputs={'Output': pre_bias},
2699
            attrs=attrs)
2700

2701
        if self.bias is not None:
2702 2703 2704 2705 2706
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2707
                        'Y': [self.bias]},
2708 2709 2710 2711 2712 2713
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2714 2715 2716 2717 2718 2719 2720 2721 2722
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2723
    Parameters:
L
lujun 已提交
2724
        name_scope(str): The name of this class.
2725
        num_filters (int): number of filters.
L
lujun 已提交
2726 2727 2728
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2741 2742 2743 2744
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2758
        assert not in_dygraph_mode(
2759
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2760 2761 2762 2763 2764 2765 2766
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2767
        self._act = act
2768

2769
    def _build_once(self, input):
2770 2771
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2772
        self.weight = self.create_parameter(
2773
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2774

2775
        self.bias = self.create_parameter(
2776 2777 2778 2779 2780
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2781 2782 2783 2784 2785 2786
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2787
                'Filter': [self.weight],
2788 2789 2790 2791 2792 2793 2794
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2795

2796
        if self.bias is not None:
2797 2798 2799 2800 2801
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2802
                        'Y': [self.bias]},
2803 2804 2805 2806 2807 2808
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2809 2810 2811


class RowConv(layers.Layer):
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2830
    Parameters:
L
lujun 已提交
2831
        name_scope(str): The name of this class.
2832 2833 2834
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2835 2836
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2837

2838 2839 2840
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2841
    Returns:
L
lujun 已提交
2842 2843
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2859 2860 2861 2862 2863
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2864
        assert not in_dygraph_mode(
2865
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2866 2867 2868 2869 2870
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2871
    def _build_once(self, input):
L
lujun 已提交
2872 2873
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2874
        self.weight = self.create_parameter(
2875 2876 2877 2878
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2879 2880 2881 2882 2883 2884

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2885
                    'Filter': [self.weight]},
L
lujun 已提交
2886 2887 2888 2889 2890 2891
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2892 2893 2894 2895
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2896 2897 2898 2899 2900 2901
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2902
        channels(int): The number of channels of input.
2903 2904 2905 2906 2907 2908 2909 2910 2911
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2912
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2926
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2927
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2928 2929 2930 2931

    """

    def __init__(self,
2932
                 channels,
L
lujun 已提交
2933 2934 2935 2936 2937
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2938 2939 2940
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2941 2942 2943
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2944
        self._channels = channels
L
lujun 已提交
2945 2946
        self._groups = groups
        self._act = act
2947
        self._dtype = dtype
L
lujun 已提交
2948 2949 2950
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2951
        param_shape = [self._channels]
L
lujun 已提交
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2964 2965 2966

    def forward(self, input):
        inputs = {'X': input}
2967
        if self.bias is not None:
2968
            inputs['Bias'] = self.bias
2969
        if self.weight is not None:
2970
            inputs['Scale'] = self.weight
L
lujun 已提交
2971 2972

        # create output
2973
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2995
    r"""
2996 2997
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3008
    :attr:`power_iters` should be a positive integer, do following
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3029
    Parameters:
3030
        weight_shape(list or tuple): The shape of weight parameter.
3031 3032 3033 3034
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3035
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3036 3037

    Returns:
3038
        None
3039 3040 3041 3042

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3043 3044
            import paddle
            x = paddle.rand((2,8,32,32))
3045

C
Chen Long 已提交
3046 3047 3048 3049
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3050 3051 3052

    """

3053 3054 3055 3056 3057 3058 3059
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3060 3061 3062
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3063
        self._dtype = dtype
L
lujun 已提交
3064

3065 3066 3067
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3068

3069
        self.weight_u = self.create_parameter(
L
lujun 已提交
3070 3071 3072 3073
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3074
        self.weight_u.stop_gradient = True
L
lujun 已提交
3075

3076
        self.weight_v = self.create_parameter(
L
lujun 已提交
3077 3078 3079 3080
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3081
        self.weight_v.stop_gradient = True
L
lujun 已提交
3082 3083

    def forward(self, weight):
3084 3085
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3086
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3102
    """
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3113
        feature_size(int): last dimension of nodes_vector.
3114 3115 3116 3117 3118 3119 3120
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3121
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3122

3123 3124
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3125

3126
        **bias** (Parameter or None): the learnable bias of this layer.
3127

3128 3129
    Returns:
        None
L
lujun 已提交
3130

3131
    Examples:
L
lujun 已提交
3132

3133
        .. code-block:: python
3134

3135 3136
          import paddle.fluid as fluid
          import numpy
3137

3138 3139 3140 3141
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3142
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3143
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3144 3145
    """

L
lujun 已提交
3146
    def __init__(self,
3147
                 feature_size,
L
lujun 已提交
3148 3149 3150 3151 3152 3153
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3154 3155 3156
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3157
        self._name = name
3158
        self._feature_size = feature_size
L
lujun 已提交
3159 3160 3161 3162 3163 3164
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3165 3166
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3167
        if self._bias_attr:
3168
            self.bias = self.create_parameter(
L
lujun 已提交
3169 3170 3171 3172
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3173
        self.weight = self.create_parameter(
L
lujun 已提交
3174 3175 3176 3177 3178 3179
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3180 3181
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3193
                'Filter': self.weight
L
lujun 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3203
                        'Y': [self.bias]},
L
lujun 已提交
3204 3205 3206 3207 3208
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3232
          inp_np = paddle.to_tensor(inp_np)
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3244 3245
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3246
        return out