conv_cudnn_helper.h 33.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
20 21
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
22
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23

Q
qingqing01 已提交
24 25 26
namespace paddle {
namespace operators {

27
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
28 29

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
30
static void RemovePaddingSlice(const phi::GPUContext& context,
31 32
                               const Tensor* input,
                               Tensor* out,
33 34
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
35
  auto& place = *context.eigen_device();
36 37
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
38 39
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
40 41 42 43 44 45
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
46
    int start = starts[i];
47 48 49 50 51 52
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
53

54 55 56 57 58 59
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
60 61 62

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
63 64
}

65 66
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
67 68
}

69 70
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
71 72
}

73 74
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
75
    int device_id = platform::GetCurrentDeviceId();
76 77 78 79
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
80 81 82
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
83 84
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
85 86
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
87 88 89
  }
}

90 91 92
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
93 94
                                int actual_algo_count,
                                size_t workspace_limit) {
95 96 97 98 99 100 101 102 103 104
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
105
  }
106 107
  return out.str();
}
108

109 110
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
111 112 113
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
114 115
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
116 117
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
118
    if (result.status == CUDNN_STATUS_SUCCESS &&
119
        result.memory < workspace_limit) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
137 138
    }
  }
139 140 141 142 143 144 145 146
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
147 148
}

149 150
static void SetConvMathType(const phi::GPUContext& ctx,
                            cudnnDataType_t dtype,
151 152
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
153
  if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
154
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
155 156 157 158
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
159
  } else if (ctx.GetComputeCapability() >= 80 && dtype == CUDNN_DATA_BFLOAT16) {
160
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
161 162 163
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
164
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
165 166 167
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
168
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
169 170 171 172 173 174
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
}

175 176 177 178
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
179 180
template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
181 182
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
Q
qingqing01 已提交
183 184

  template <typename T>
185 186
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
187 188 189
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
190
    auto dtype = platform::CudnnDataType<T>::type;
191
    SetConvMathType(ctx, dtype, args.cdesc);
192

193
    if (deterministic) {
H
hong 已提交
194
      result = FindAlgoDeterministic(args);
Q
qingqing01 已提交
195
    } else {
196 197 198 199 200
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
H
hong 已提交
201
      auto key = args.Convert2ConvCacheKey<T>();
202 203
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConvForward();
      if (cache.Find(key)) {
H
hong 已提交
204 205 206
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
207 208 209 210 211 212 213 214
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
H
hong 已提交
215 216 217
        phi::autotune::DnnNode node(static_cast<int64_t>(result.algo),
                                    result.workspace_size);
        cache.Set(key, node);
218
      }
Q
qingqing01 已提交
219
    }
220 221
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
H
hong 已提交
222 223
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
224
    return result;
Q
qingqing01 已提交
225 226
  }

227 228
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
229
    size_t workspace_size = 0;
230
    PADDLE_ENFORCE_GPU_SUCCESS(
231
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
232 233 234 235 236 237 238
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
239 240
    return workspace_size;
  }
241 242

 private:
H
hong 已提交
243 244 245
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size = GetWorkspaceSize(args, static_cast<AlgoT>(1));
    return SearchResult<AlgoT>(static_cast<AlgoT>(1), -1.0, workspace_size);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
261 262 263 264 265 266 267 268
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count,
            perf_results.data()));
269 270 271 272 273 274
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
275 276
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
277 278 279 280 281 282 283
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
284 285 286 287 288
              args.handle,
              args.idesc.desc(),
              args.wdesc.desc(),
              args.cdesc.desc(),
              args.odesc.desc(),
289
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
290 291
              workspace_size_limit,
              &(result.algo)));
292 293 294 295 296
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
297 298 299 300 301 302 303
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit,
304 305
            &(result.algo)));
#endif
H
hong 已提交
306
    result.workspace_size = GetWorkspaceSize(args, result.algo);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
325 326 327 328 329 330 331 332 333 334 335 336 337
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
338 339 340
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
341 342
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
343 344

    VLOG(4) << GetPerfResultString<PerfT>(
345 346 347 348 349 350
        "[Exhaustive Search] FwdAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
351

H
hong 已提交
352
    result.workspace_size = GetWorkspaceSize(args, result.algo);
353 354 355 356 357
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
358 359 360 361 362 363
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
364 365 366 367 368 369 370
                args.handle,
                args.idesc.desc(),
                args.wdesc.desc(),
                args.cdesc.desc(),
                args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo),
                &workspace_size);
371 372
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
373 374 375
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
376
      return max_workspace_size;
377 378 379 380
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
381 382
};

383 384 385 386 387 388
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
389 390
template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
391 392
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
Q
qingqing01 已提交
393 394

  template <typename T>
395 396
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
397 398 399
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
400
    auto dtype = platform::CudnnDataType<T>::type;
401
    SetConvMathType(ctx, dtype, args.cdesc);
402

403
    if (deterministic) {
H
hong 已提交
404
      result = FindAlgoDeterministic(args);
Q
qingqing01 已提交
405
    } else {
406 407 408 409 410
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
H
hong 已提交
411
      auto key = args.Convert2ConvCacheKey<T>();
412 413 414
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardData();
      if (cache.Find(key)) {
H
hong 已提交
415 416 417
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
418 419 420 421 422 423 424 425
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
H
hong 已提交
426 427 428
        phi::autotune::DnnNode node(static_cast<int64_t>(result.algo),
                                    result.workspace_size);
        cache.Set(key, node);
429
      }
Q
qingqing01 已提交
430
    }
431 432
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
H
hong 已提交
433 434
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
435
    return result;
Q
qingqing01 已提交
436 437
  }

438 439
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
440
    size_t workspace_size = 0;
441
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
442
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
443 444 445 446 447 448 449
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
450 451
    return workspace_size;
  }
452 453

 private:
H
hong 已提交
454 455 456 457 458
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, -1.0, workspace_size);
459 460 461 462 463 464 465 466 467 468 469 470 471 472
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
473 474 475 476 477 478 479 480
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count,
            perf_results.data()));
481 482 483 484
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
485 486
    bool blacklist = std::any_of(args.s.begin(),
                                 args.s.begin() + stride_dim,
487 488 489 490 491 492 493 494 495 496 497 498
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
499 500
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
501 502 503 504 505 506 507
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
508 509 510 511 512
              args.handle,
              args.wdesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.idesc.desc(),
513
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
514 515
              workspace_size_limit,
              &(result.algo)));
516 517 518 519 520
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
521 522 523 524 525
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
526
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
527 528
            workspace_size_limit,
            &(result.algo)));
529
#endif
H
hong 已提交
530
    result.workspace_size = GetWorkspaceSize(args, result.algo);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
549 550 551 552 553 554 555 556 557 558 559 560 561
              args.handle,
              args.wdesc.desc(),
              args.w->data<T>(),
              args.odesc.desc(),
              args.o->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
562 563 564
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
565 566
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
567 568

    VLOG(4) << GetPerfResultString<PerfT>(
569 570 571 572 573 574
        "[Exhaustive Search] BwdDataAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
575

H
hong 已提交
576
    result.workspace_size = GetWorkspaceSize(args, result.algo);
577 578 579 580 581
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
582 583 584 585 586 587
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
588 589 590 591 592
                args.handle,
                args.wdesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.idesc.desc(),
593 594
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
595 596
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
597 598 599
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
600
      return max_workspace_size;
601 602 603 604
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
605 606
};

607 608 609 610
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
611 612
template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
613 614
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
Q
qingqing01 已提交
615 616

  template <typename T>
617 618
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
619 620
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
621
    platform::CUDAGraphCaptureModeGuard guard;
622
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
623
    auto dtype = platform::CudnnDataType<T>::type;
624
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
625

626
    if (deterministic) {
H
hong 已提交
627
      result = FindAlgoDeterministic(args);
Q
qingqing01 已提交
628
    } else {
629 630 631 632 633
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
H
hong 已提交
634
      auto key = args.Convert2ConvCacheKey<T>();
635 636 637
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardFilter();
      if (cache.Find(key)) {
H
hong 已提交
638 639 640
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
641
      } else {
642 643 644 645 646 647 648
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
H
hong 已提交
649 650 651
        phi::autotune::DnnNode node(static_cast<int64_t>(result.algo),
                                    result.workspace_size);
        cache.Set(key, node);
652
      }
Q
qingqing01 已提交
653
    }
654 655
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
H
hong 已提交
656 657
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
658
    return result;
Q
qingqing01 已提交
659 660
  }

661 662
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
663
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
664
    size_t workspace_size = 0;
665
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
666
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
667 668 669 670 671 672 673
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
674 675
    return workspace_size;
  }
676 677

 private:
H
hong 已提交
678 679 680 681 682
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, -1.0, workspace_size);
683 684 685 686 687 688 689 690 691 692 693 694 695 696
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
697 698 699 700 701 702 703 704
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count,
            perf_results.data()));
705 706 707 708 709 710
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
711 712
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
713 714 715 716 717 718 719
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
720 721 722 723 724
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
725
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
726 727
              workspace_size_limit,
              &(result.algo)));
728 729 730 731 732
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
733 734 735 736 737
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
738
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
739 740
            workspace_size_limit,
            &(result.algo)));
741 742
#endif

H
hong 已提交
743
    result.workspace_size = GetWorkspaceSize(args, result.algo);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
765 766 767 768 769 770 771 772 773 774 775 776 777
                args.handle,
                args.idesc.desc(),
                args.x->data<T>(),
                args.odesc.desc(),
                args.o->data<T>(),
                args.cdesc.desc(),
                args.wdesc.desc(),
                const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS,
                &returned_algo_count,
                perf_results.data(),
                workspace_ptr,
                max_workspace_size));
778
      };
779 780
      workspace_handle.RunFuncSync(
          cudnn_find_func, max_workspace_size, UseFixedWorkspace());
781 782

      VLOG(4) << GetPerfResultString<PerfT>(
783 784 785 786 787 788
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          returned_algo_count,
          workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
789 790 791 792 793
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
794 795 796 797 798 799 800 801
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              perf_results.size(),
              &returned_algo_count,
              perf_results.data()));
802 803 804
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
805 806 807 808
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          perf_results.size(),
          workspace_size_limit);
809 810 811
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

H
hong 已提交
812
    result.workspace_size = GetWorkspaceSize(args, result.algo);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
833 834 835 836 837 838
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
839 840 841 842 843
                args.handle,
                args.idesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.wdesc.desc(),
844 845
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
846 847
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
848 849 850
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
851
      return max_workspace_size;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
892 893 894 895
};

}  // namespace operators
}  // namespace paddle