framework.py 56.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
33
    'get_var',
34
]
Y
Yu Yang 已提交
35

Q
qiaolongfei 已提交
36 37 38 39 40 41 42 43 44 45 46 47
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
48

49
def convert_np_dtype_to_dtype_(np_dtype):
50 51 52 53 54
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

55
    Returns(core.VarDesc.VarType): the data type in Paddle
56 57

    """
58 59
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
60
        return core.VarDesc.VarType.FP32
61
    elif dtype == np.float64:
62
        return core.VarDesc.VarType.FP64
63
    elif dtype == np.float16:
64
        return core.VarDesc.VarType.FP16
65
    elif dtype == np.int32:
66
        return core.VarDesc.VarType.INT32
67
    elif dtype == np.int16:
68
        return core.VarDesc.VarType.INT16
69
    elif dtype == np.int64:
70
        return core.VarDesc.VarType.INT64
71
    elif dtype == np.bool:
72
        return core.VarDesc.VarType.BOOL
73 74
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
75 76
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
77 78 79 80 81
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
82 83 84
    """
    Check the data type is floating or not.
    Args:
85
        dtype(np.dtype|core.VarDesc.VarType): data type.
86 87 88 89 90
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
91
    if not isinstance(dtype, core.VarDesc.VarType):
92 93
        dtype = convert_np_dtype_to_dtype_(dtype)

94 95 96 97
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
98 99


Y
Yang Yang(Tony) 已提交
100
def _debug_string_(proto, throw_on_error=True):
101 102 103 104 105 106 107 108 109 110 111
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
112
    error_fields = list()
Y
Yang Yang(Tony) 已提交
113
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
114 115
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
116 117 118
    return proto.__str__()


Y
Yu Yang 已提交
119
class Variable(object):
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
143
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of variable.
144
        lod_level(int): The level of lod tensor. 0 means it is not a time
145
            series data.
146 147
        capacity(int): The capacity of Channel variable. Ignored
            for other types.
148 149 150 151 152 153
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
154 155
    def __init__(self,
                 block,
Y
Yu Yang 已提交
156
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
157 158 159 160
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
161
                 capacity=None,
Q
QI JUN 已提交
162
                 persistable=None,
F
fengjiayi 已提交
163
                 error_clip=None,
Y
Yu Yang 已提交
164
                 stop_gradient=False,
F
fengjiayi 已提交
165
                 is_data=False,
Y
Yu Yang 已提交
166
                 **kwargs):
Y
Yu Yang 已提交
167
        self.block = block
F
fengjiayi 已提交
168
        self.error_clip = error_clip
Y
Yu Yang 已提交
169 170

        if name is None:
Y
Yu Yang 已提交
171
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
172 173 174 175
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
176
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
177
            is_new_var = True
Y
Yu Yang 已提交
178

Y
Yu Yang 已提交
179 180 181 182 183 184 185 186
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
187
        if shape is not None:
Y
Yu Yang 已提交
188
            if is_new_var:
189
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
198
        if dtype is not None:
199
            if not isinstance(dtype, core.VarDesc.VarType):
200
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
201
            if is_new_var:
F
fengjiayi 已提交
202
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
203
            else:
F
fengjiayi 已提交
204
                old_dtype = self.dtype
Q
QI JUN 已提交
205
                if dtype != old_dtype:
Y
Yu Yang 已提交
206 207 208 209 210
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
211 212

        if lod_level is not None:
Y
Yu Yang 已提交
213
            if is_new_var:
214
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
215 216 217 218 219 220 221
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
222 223 224 225 226 227 228 229 230 231 232
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

233 234 235 236 237 238 239 240
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
241
        self.block.vars[name] = self
Y
Yu Yang 已提交
242
        self.op = None
Y
Yu Yang 已提交
243
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
244
        self.is_data = is_data
Y
Yu Yang 已提交
245

246
    def __str__(self):
Y
Yang Yang(Tony) 已提交
247 248
        return self.to_string(True)

F
update  
fengjiayi 已提交
249
    def to_string(self, throw_on_error, with_details=False):
250 251 252 253 254 255
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.
F
update  
fengjiayi 已提交
256 257
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
258 259 260 261

        Returns(str): The debug string.

        """
F
update  
fengjiayi 已提交
262 263
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
264 265
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
266 267 268 269 270 271 272
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
273 274 275

    __repr__ = __str__

276 277 278
    def set_desc(self, input):
        self.desc = input

279 280 281 282
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
283 284 285 286
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
287 288
    @property
    def name(self):
289
        return self.desc.name()
Y
Yu Yang 已提交
290

T
typhoonzero 已提交
291 292 293 294
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
295 296 297
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
298
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
299 300

    @property
F
fengjiayi 已提交
301 302
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
303 304 305

    @property
    def lod_level(self):
306
        return self.desc.lod_level()
Y
Yu Yang 已提交
307

Y
Yu Yang 已提交
308 309 310 311
    @property
    def type(self):
        return self.desc.type()

312 313 314
    def set_error_clip(self, error_clip):
        self.error_clip = error_clip

Y
Yu Yang 已提交
315

F
fengjiayi 已提交
316 317 318
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
319 320 321

    Returns(list): list of OpProto

F
fengjiayi 已提交
322 323 324 325 326 327 328 329 330 331
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
332 333 334 335
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
336 337 338 339 340 341 342 343 344
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
345
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
346 347 348 349 350 351
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
352 353 354 355 356 357 358 359
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
360 361
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
362 363
        return self.op_proto_map[type]

364 365 366 367 368 369 370
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
371

Y
Yu Yang 已提交
372
class Operator(object):
373
    """
374 375
    Python Operator class. The operator represents the build in instructions in a
    Block. Users can use the build in instructions to describe their neural
376 377
    network.
    """
378 379 380 381 382
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
typhoonzero 已提交
383
        'channel_recv', 'select', 'gen_nccl_id'
384
    }
385

Y
Yu Yang 已提交
386 387
    def __init__(self,
                 block,
Y
Yu Yang 已提交
388
                 desc,
Y
Yu Yang 已提交
389 390 391 392
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
393 394 395 396 397 398 399 400 401 402 403 404 405 406
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
C
caoying03 已提交
407 408
            block(Block): The block has the current operator.
            desc(core.OpDesc): The protobuf description.
409 410 411
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
C
caoying03 已提交
412 413
            outputs(dict): The output dictionary which has the same format with
                           inputs.
414 415 416 417
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
418
        self.block = block
Y
Yu Yang 已提交
419
        self.desc = desc
T
typhoonzero 已提交
420
        self.attrs = attrs
Y
yuyang18 已提交
421 422 423 424 425 426 427 428
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
429 430 431 432 433 434 435 436

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
437

F
fengjiayi 已提交
438 439 440 441 442
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
443
        self.desc.set_type(type)
F
fengjiayi 已提交
444
        proto = OpProtoHolder.instance().get_op_proto(type)
445

Y
Yang Yang(Tony) 已提交
446 447
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
448
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
449 450
                    return True
            return False
Q
QI JUN 已提交
451

Y
Yang Yang(Tony) 已提交
452 453 454 455 456 457 458
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
459 460 461 462
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
463 464
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
465 466 467
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
468 469 470 471
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
472
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
473 474
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
475

Y
Yu Yang 已提交
476
        if outputs is not None:
477 478 479 480 481 482 483
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
484 485
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
486 487
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
488

F
fengjiayi 已提交
489
            for out_proto in proto.outputs:
490 491 492 493
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
494 495
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
496 497 498 499 500 501
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
502

Y
yuyang18 已提交
503 504
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
505
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
506
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
507
                attr_name = attr.name
Y
yuyang18 已提交
508 509
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
510
                    continue
Y
yuyang18 已提交
511 512 513 514 515
                if isinstance(self.attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
                elif isinstance(self.attrs[attr_name], core.BlockDesc) or \
                        isinstance(self.attrs[attr_name], core.ProgramDesc):
T
typhoonzero 已提交
516
                    self.desc.set_serialized_attr(
Y
yuyang18 已提交
517
                        attr_name, self.attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
518
                else:
Y
yuyang18 已提交
519
                    self.desc.set_attr(attr_name, self.attrs[attr_name])
520
        self.desc.check_attrs()
521
        if self.has_kernel(type):
Q
QI JUN 已提交
522
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
523
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
524

525 526 527
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
528
    def to_string(self, throw_on_error):
529 530 531 532 533 534 535 536 537
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
538 539
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
540 541 542 543
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
544 545 546

    __repr__ = __str__

F
fengjiayi 已提交
547 548 549 550 551
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
552 553 554 555 556 557 558 559 560
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
561 562
        return self.desc.input(name)

T
typhoonzero 已提交
563 564 565 566 567 568
    def rename_input(self, old_name, new_name):
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
569 570
    @property
    def input_names(self):
571 572 573 574 575
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
576 577
        return self.desc.input_names()

T
typhoonzero 已提交
578 579 580 581 582 583 584 585
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
586
    def output(self, name):
587 588 589 590 591 592 593 594 595
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
596 597 598 599
        return self.desc.output(name)

    @property
    def output_names(self):
600 601 602 603 604
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
605 606
        return self.desc.output_names()

607 608
    @property
    def idx(self):
609 610 611 612 613 614
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
615 616 617 618 619 620
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
621
    def has_attr(self, name):
622 623 624 625 626 627 628 629
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
630 631 632
        return self.desc.has_attr(name)

    def attr_type(self, name):
633 634 635 636 637 638 639 640
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
641 642
        return self.desc.attr_type(name)

Y
yuyang18 已提交
643 644 645 646
    def set_attr(self, name, val):
        self.attrs[name] = val
        self.desc.set_attr(name, val)

F
fengjiayi 已提交
647 648
    @property
    def attr_names(self):
649 650 651 652 653
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
654 655 656
        return self.desc.attr_names()

    def attr(self, name):
657 658 659 660 661 662 663 664 665
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
666
        return self.desc.attr(name)
Y
Yu Yang 已提交
667

F
fengjiayi 已提交
668
    def block_attr(self, name):
669 670 671 672 673 674 675 676
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
677
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
678

J
JiayiFeng 已提交
679
    def all_attrs(self):
F
fengjiayi 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692
        """
        Get the attribute dict
        Returns(dict): The Operator's attribute dict
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
693

Y
Yu Yang 已提交
694 695
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
696
        self.desc = program.desc.block(idx)
697
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
698
        self.ops = list()  # operator list
Y
Yu Yang 已提交
699
        self.program = program
700
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
701

702
    def __str__(self):
Y
Yang Yang(Tony) 已提交
703 704
        return self.to_string(True)

F
fengjiayi 已提交
705 706 707 708 709 710
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
F
update  
fengjiayi 已提交
711 712
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
F
fengjiayi 已提交
713 714 715 716 717 718 719

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
720
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
721 722 723
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
724
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
725
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
726
            for op in self.ops:
F
fengjiayi 已提交
727 728
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
729 730 731 732 733 734
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
735 736 737

    __repr__ = __str__

Y
Yu Yang 已提交
738 739
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
740
        return self.desc.parent
Y
Yu Yang 已提交
741

Y
Yu Yang 已提交
742 743 744 745 746 747 748
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
749 750
    @property
    def idx(self):
Y
Yu Yang 已提交
751
        return self.desc.id
Y
Yu Yang 已提交
752

Q
Qiao Longfei 已提交
753
    def var(self, name):
Y
Yu Yang 已提交
754
        if not isinstance(name, basestring):
755 756 757
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
758 759
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
760
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
761
        return v
Q
Qiao Longfei 已提交
762

F
fengjiayi 已提交
763
    def var_recursive(self, name):
Y
Yu Yang 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
790

Q
Qiao Longfei 已提交
791
    def all_parameters(self):
792 793 794 795 796
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
797

Y
Yu Yang 已提交
798
    def create_var(self, *args, **kwargs):
799
        var = Variable(block=self, *args, **kwargs)
800 801
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
802
        return var
Y
Yu Yang 已提交
803

Q
Qiao Longfei 已提交
804 805 806
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
807 808 809 810 811
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
        """
        if not self.has_var(name):
812
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
813 814
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
815
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
816 817 818 819 820 821 822
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
823
            var_type = "Variable"
T
wip  
typhoonzero 已提交
824 825 826 827
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
828
        orig_var_type = v.type
T
typhoonzero 已提交
829
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
830
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
831
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
832
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
833 834 835 836
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
837
                type=orig_var_type,
T
wip  
typhoonzero 已提交
838 839 840 841 842 843 844
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
845
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
846 847
            var = Variable(
                self,
T
typhoonzero 已提交
848
                type=orig_var_type,
T
wip  
typhoonzero 已提交
849 850 851 852 853 854 855 856
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
857
        self.sync_with_cpp()
858
        return var
T
typhoonzero 已提交
859

860 861 862 863 864
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
865 866
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
867
        param = Parameter(global_block, *args, **kwargs)
868 869
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
870
        return param
Y
Yu Yang 已提交
871

Y
Yu Yang 已提交
872
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
873
        op_desc = self.desc.append_op()
874
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
875 876 877
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
878 879 880 881 882 883 884
    def insert_op(self, index, *args, **kwargs):
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

885 886 887 888 889
    def remove_op(self, index):
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
890
    def slice_ops(self, start, end):
Q
qiaolongfei 已提交
891
        return self.ops[start:end]
Y
Yancey1989 已提交
892

Y
Yu Yang 已提交
893
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
894 895
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
896
        self.ops.insert(0, op)
Y
Yu Yang 已提交
897 898
        return op

Q
Qiao Longfei 已提交
899
    def sync_with_cpp(self):
900
        """
G
gongweibao 已提交
901
        Sync from the desc on the c++ end.
902 903 904

        This method is used to synchronize the c++ desc instance generated by backward.
        """
Q
Qiao Longfei 已提交
905 906 907 908 909
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

910 911 912 913 914
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
915
        # sync operators from cpp
916 917 918 919
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
936 937 938 939 940

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
941
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
942 943 944 945 946 947 948

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

949 950 951 952 953 954 955 956 957 958 959 960 961
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
962 963 964 965
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

966 967
    def copy_param_info_from(self, other):
        """
968
        Copy the information of parameters from the other block
969
        Args:
970
            other(Block): the other block
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
994
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
995
                error_clip=p.error_clip,
996 997 998
                name=v.name)
            self.vars[new_p.name] = new_p

999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    def clone_variable(self, var):
        """
        Clone a variable into current block.
        Args:
            var: the variable to be cloned.

        Returns:
            The new  variable cloned from 'var' in current block.
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1009 1010 1011 1012 1013
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1014 1015 1016 1017 1018 1019
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1020 1021
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1022 1023 1024 1025 1026 1027 1028
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1029 1030
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1031
        return ret_var
1032

Y
Yu Yang 已提交
1033 1034

class Program(object):
D
dzhwinter 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1046
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1047 1048

    Returns:
Y
yuyang18 已提交
1049
        A empty program.
D
dzhwinter 已提交
1050 1051

    Examples:
Y
yuyang18 已提交
1052 1053 1054 1055 1056 1057
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1058 1059 1060

    """

1061 1062
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1063 1064
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1065
        self._seed = 0
Y
yuyang18 已提交
1066
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1067
        self._op_role_var = []
Y
yuyang18 已提交
1068 1069 1070

    @property
    def op_role(self):
Y
yuyang18 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1084 1085 1086 1087 1088 1089 1090 1091
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1092 1093 1094 1095 1096 1097 1098
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1099 1100 1101 1102
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1103
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1104 1105

    @contextlib.contextmanager
Y
yuyang18 已提交
1106
    def optimized_guard(self, var):
Y
yuyang18 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
            var(Variable|str): The variable (name) to be optimized.

        Examples:

            >>> p, g = backward(...)
Y
yuyang18 已提交
1119
            >>> with program.optimized_guard(p):
Y
yuyang18 已提交
1120 1121
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1122 1123
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1124
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1125
        yield
Y
yuyang18 已提交
1126
        self._op_role_var = []
Y
yuyang18 已提交
1127
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1128

1129
    def __str__(self):
Y
yuyang18 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1139 1140
        return self.to_string(True)

F
fengjiayi 已提交
1141 1142 1143
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1144

F
fengjiayi 已提交
1145
        Args:
Y
yuyang18 已提交
1146 1147
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1148

Y
yuyang18 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1172

1173
    def get_desc(self):
Y
yuyang18 已提交
1174 1175 1176 1177 1178 1179 1180
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1181 1182
        return self.desc

1183
    def clone(self, for_test=False):
Y
yuyang18 已提交
1184 1185 1186 1187 1188 1189 1190 1191
        """
        Create a new, duplicated program.


        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1192

Y
yuyang18 已提交
1193 1194 1195 1196 1197
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please.
1198 1199

        Args:
Y
yuyang18 已提交
1200 1201
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1202

D
dzhwinter 已提交
1203
        Returns:
Y
yuyang18 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1257 1258
        """
        if for_test:
1259
            p = self.inference_optimize()
1260
        else:
1261
            p = Program()
1262
            p.desc = core.ProgramDesc(self.desc)
1263 1264 1265
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1266
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1267
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1268
        return p
1269

1270
    def prune(self, targets):
Y
yuyang18 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1286 1287 1288 1289 1290 1291
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1292 1293
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1294
                    # and we need to find the current op that generate this
1295 1296 1297 1298 1299 1300 1301 1302
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1303
                    t = t.op
1304 1305 1306 1307
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1308
                else:
1309 1310
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1311 1312 1313 1314 1315 1316 1317 1318

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1319
    def inference_optimize(self):
Y
yuyang18 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1331 1332
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1333
        res = Program()
1334 1335 1336 1337 1338 1339 1340
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1341 1342 1343 1344
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1345 1346
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1359 1360
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1361
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1362 1363
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1364

D
dzhwinter 已提交
1365 1366
    @property
    def random_seed(self):
Y
yuyang18 已提交
1367 1368 1369 1370 1371 1372
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1373 1374
        return self._seed

Q
qiaolongfei 已提交
1375 1376
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1377 1378 1379
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1380 1381
        return self.desc.num_blocks()

D
dzhwinter 已提交
1382 1383 1384 1385 1386 1387
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1388 1389
    def __repr__(self):
        return str(self)
1390

Y
Yu Yang 已提交
1391
    def global_block(self):
Y
yuyang18 已提交
1392 1393 1394
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1395 1396
        return self.blocks[0]

Q
Qiao Longfei 已提交
1397
    def block(self, index):
Y
yuyang18 已提交
1398 1399 1400 1401 1402 1403 1404 1405
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1406 1407
        return self.blocks[index]

Y
Yu Yang 已提交
1408
    def current_block(self):
Y
yuyang18 已提交
1409 1410 1411 1412
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1413 1414
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1415
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1426
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1427 1428 1429
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1430 1431 1432 1433 1434
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1435 1436 1437 1438 1439
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1440 1441
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1442
    def sync_with_cpp(self):
Y
yuyang18 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1453 1454 1455 1456 1457
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1458 1459
    def copy_param_info_from(self, other):
        """
1460
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1461

Y
yuyang18 已提交
1462 1463 1464
        Notes: This is a very low level API. Users should not invoke it
        directly.

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1480 1481 1482
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1483

Y
yuyang18 已提交
1484 1485 1486
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1504
    def list_vars(self):
Y
yuyang18 已提交
1505 1506 1507 1508 1509 1510
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1511 1512 1513 1514
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1515

Y
Yu Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1527 1528 1529

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1530 1531 1532 1533
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1534 1535
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1536
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1537

W
wanghaoshuang 已提交
1538
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1539

F
fengjiayi 已提交
1540 1541 1542
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1543 1544 1545
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1546

F
update  
fengjiayi 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1561
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1562 1563 1564 1565 1566
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1567 1568 1569 1570
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1571

Y
Yu Yang 已提交
1572
# program is a global instance.
Y
Yu Yang 已提交
1573 1574
_main_program_ = Program()
_startup_program_ = Program()
1575

1576

1577
def default_startup_program():
Y
Yu Yang 已提交
1578
    """
Y
yuyang18 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1588

Y
Yu Yang 已提交
1589 1590 1591
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1592
    return _startup_program_
1593

1594

1595
def default_main_program():
Y
Yu Yang 已提交
1596
    """
Y
yuyang18 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1606

Y
Yu Yang 已提交
1607 1608 1609
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1610
    return _main_program_
Y
Yu Yang 已提交
1611 1612 1613 1614 1615


def switch_main_program(program):
    """
    Switch the main program to a new program.
1616

Y
Yu Yang 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1631
    Switch the startup program to a new program
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.

    Examples:

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1662

Y
Yu Yang 已提交
1663
    Examples:
Y
yuyang18 已提交
1664 1665 1666 1667 1668 1669

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1670

Y
Yu Yang 已提交
1671
    Args:
Y
yuyang18 已提交
1672
        main_program(Program): New main program inside `with` statement.
1673
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1687 1688 1689 1690


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1691 1692
    Get a variable by name from the global block of a program.
    
X
xuwei06 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1704
    assert isinstance(program, Program)
X
xuwei06 已提交
1705 1706

    return program.global_block().var(name)