split_op_plugin.cu 10.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hjchen2 已提交
15 16
#include <cuda_fp16.h>
#include <algorithm>
N
nhzlx 已提交
17
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
N
nhzlx 已提交
18
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
19 20 21 22

namespace paddle {
namespace inference {
namespace tensorrt {
23
namespace plugin {
N
nhzlx 已提交
24

N
nhzlx 已提交
25 26 27 28 29
SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
  return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);

H
hjchen2 已提交
30
template <typename T>
31 32 33 34 35 36 37 38 39 40
__device__ int upper_bound(T const* vals, int n, T const& key) {
  int i = 0;
  while (n > 0) {
    int m = n / 2;
    int j = i + m;
    if (!(key < vals[j])) {
      i = j + 1;
      n -= m + 1;
    } else {
      n = m;
H
hjchen2 已提交
41 42
    }
  }
43
  return i;
H
hjchen2 已提交
44 45
}

46 47 48 49 50 51
nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
  PADDLE_ENFORCE_EQ(num_inputs, 1);
  PADDLE_ENFORCE_LT(index, this->getNbOutputs());

  nvinfer1::Dims output_dims = input_dims[0];
52
  output_dims.d[axis_] = output_length_.at(index);
N
nhzlx 已提交
53 54 55 56
  return output_dims;
}

int SplitPlugin::initialize() {
57
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
H
hjchen2 已提交
58 59 60 61 62 63 64 65 66 67 68
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
N
nhzlx 已提交
69 70
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
H
hjchen2 已提交
71 72 73
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
74
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
N
nhzlx 已提交
75
  }
76
  axis_shape_ = dims.d[axis_];
H
hjchen2 已提交
77 78 79 80 81 82
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

83 84
// The following part of the code refers to onnx-tensorrt
// https://github.com/onnx/onnx-tensorrt/blob/master/Split.cu
H
hjchen2 已提交
85
template <typename T>
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
__global__ void split_kernel(int nsegment,
                             int const* __restrict__ segment_offsets,
                             T const* __restrict__ idata, T* const* odatas,
                             int inner_cols, int axis_shape, int outer_rows) {
  int x0 = threadIdx.x + blockIdx.x * blockDim.x;
  int src_y0 = threadIdx.y + blockIdx.y * blockDim.y;
  int z0 = threadIdx.z + blockIdx.z * blockDim.z;
  for (int z = z0; z < outer_rows; z += blockDim.z * gridDim.z) {
    for (int src_y = src_y0; src_y < axis_shape;
         src_y += blockDim.y * gridDim.y) {
      for (int x = x0; x < inner_cols; x += blockDim.x * gridDim.x) {
        int segment = upper_bound(segment_offsets, nsegment, src_y) - 1;
        int dst_y = src_y - segment_offsets[segment];
        int dst_ny = segment_offsets[segment + 1] - segment_offsets[segment];
        odatas[segment][x + inner_cols * (dst_y + dst_ny * z)] =
            idata[x + inner_cols * (src_y + axis_shape * z)];
      }
    }
N
nhzlx 已提交
104 105 106 107 108
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
109 110
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets_[0]);
H
hjchen2 已提交
111
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
112 113
  float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
  float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
114 115 116
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
      output_ptrs, h_odatas, d_output_ptrs_.size() * sizeof(float*),
      cudaMemcpyHostToDevice, stream));
117 118 119 120 121 122 123 124 125 126 127

  int outer_rows = outer_rows_ * batchSize;

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols_ - 1) / block.x + 1, 65535u),
            std::min((axis_shape_ - 1) / block.y + 1, 65535u),
            std::min((outer_rows_ - 1) / block.z + 1, 65535u));

  split_kernel<<<grid, block, 0, stream>>>(
      d_segment_offsets_.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
      inner_cols_, axis_shape_, outer_rows);
N
nhzlx 已提交
128 129 130
  return cudaGetLastError() != cudaSuccess;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int SplitPluginDynamic::initialize() { return 0; }

size_t SplitPluginDynamic::getSerializationSize() const { return 0; }

void SplitPluginDynamic::serialize(void* buffer) const {}

nvinfer1::DimsExprs SplitPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder) {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));
  PADDLE_ENFORCE_LT(output_index, output_length_.size(),
                    platform::errors::InvalidArgument(
                        "When GetOutputDimensions, the index(%d) should not "
                        "greater the num(%d) of the outpus.",
                        output_index, output_length_.size()));

  nvinfer1::DimsExprs output_dims = inputs[0];
  output_dims.d[axis_] = expr_builder.constant(output_length_.at(output_index));

  return output_dims;
}

bool SplitPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc& in = in_out[pos];
  if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
    return (in.type == nvinfer1::DataType::kFLOAT ||
            in.type == nvinfer1::DataType::kHALF) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
#else
    return (in.type == nvinfer1::DataType::kFLOAT) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
  }
  const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SplitPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
  return input_types[0];
}

int SplitPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
                                const nvinfer1::PluginTensorDesc* output_desc,
                                const void* const* inputs, void* const* outputs,
                                void* workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  int outer_rows = 1;
  int inner_cols = 1;
  // with batch
  for (int i = 0; i < axis_; i++) {
    outer_rows *= input_dims.d[i];
  }

  for (int i = axis_ + 1; i < input_dims.nbDims; i++) {
    inner_cols *= input_dims.d[i];
  }

  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); i++) {
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
  }
  int axis_shape = input_dims.d[axis_];
  thrust::device_vector<int> d_segment_offsets = segment_offsets;
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets[0]);

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols - 1) / block.x + 1, 65535u),
            std::min((axis_shape - 1) / block.y + 1, 65535u),
            std::min((outer_rows - 1) / block.z + 1, 65535u));

  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
    thrust::device_vector<float*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const float* input_ptr = static_cast<const float*>(inputs[0]);
    float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpyAsync(output_ptrs, h_odatas,
                        d_output_ptrs.size() * sizeof(float*),
                        cudaMemcpyHostToDevice, stream),
        platform::errors::External(
            "CUDA Memcpy failed during split plugin run."));

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
  } else if (input_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
    thrust::device_vector<half*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const half* input_ptr = static_cast<const half*>(inputs[0]);
    half* const* h_odatas = reinterpret_cast<half* const*>(outputs);
    half** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpyAsync(output_ptrs, h_odatas,
                        d_output_ptrs.size() * sizeof(half*),
                        cudaMemcpyHostToDevice, stream),
        platform::errors::External(
            "CUDA Memcpy failed during split plugin run."));

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "The cuda archs you specific should greater than 600."));
#endif
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

269 270 271 272
}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle