elementwise_kernel.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
YuanRisheng 已提交
15
#include "paddle/phi/kernels/elementwise_kernel.h"
16 17 18 19
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_divide_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/elementwise_subtract_kernel.h"
20

21 22
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/kernel_registry.h"
23

24
namespace phi {
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename T, typename Context>
void MaximumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out) {
  int axis = -1;
  MaximumRawKernel<T>(dev_ctx, x, y, axis, out);
}

template <typename T, typename Context>
void MinimumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out) {
  int axis = -1;
  MinimumRawKernel<T>(dev_ctx, x, y, axis, out);
}

template <typename T, typename Context>
C
Chen Weihang 已提交
45 46 47 48
void RemainderKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     DenseTensor* out) {
49
  int axis = -1;
C
Chen Weihang 已提交
50
  RemainderRawKernel<T>(dev_ctx, x, y, axis, out);
51
}
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

template <typename T, typename Context>
void FloorDivideKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       DenseTensor* out) {
  int axis = -1;
  FloorDivideRawKernel<T>(dev_ctx, x, y, axis, out);
}

template <typename T, typename Context>
void ElementwisePowKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          DenseTensor* out) {
  int axis = -1;
  ElementwisePowRawKernel<T>(dev_ctx, x, y, axis, out);
}

71 72 73 74 75 76 77 78 79
template <typename T, typename Context>
void ElementwiseHeavisideKernel(const Context& dev_ctx,
                                const DenseTensor& x,
                                const DenseTensor& y,
                                DenseTensor* out) {
  int axis = -1;
  ElementwiseHeavisideRawKernel<T>(dev_ctx, x, y, axis, out);
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
template <typename T, typename Context>
void DivideKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  DenseTensor* out) {
  DivideRawKernel<T, Context>(dev_ctx, x, y, -1, out);
}

template <typename T, typename Context>
void MultiplyKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    DenseTensor* out) {
  MultiplyRawKernel<T, Context>(dev_ctx, x, y, -1, out);
}

template <typename T, typename Context>
void AddKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& y,
               DenseTensor* out) {
  AddRawKernel<T, Context>(dev_ctx, x, y, -1, out);
}

template <typename T, typename Context>
void SubtractKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    DenseTensor* out) {
  int axis = -1;
  SubtractRawKernel<T>(dev_ctx, x, y, axis, out);
}
112

113
}  // namespace phi
114 115
using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
PD_REGISTER_KERNEL(maximum,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(minimum,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}
C
Chen Weihang 已提交
135 136 137 138 139 140 141 142
PD_REGISTER_KERNEL(remainder,
                   CPU,
                   ALL_LAYOUT,
                   phi::RemainderKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
143 144
PD_REGISTER_KERNEL(
    floor_divide, CPU, ALL_LAYOUT, phi::FloorDivideKernel, int, int64_t) {}
145 146 147 148 149 150 151 152
PD_REGISTER_KERNEL(elementwise_heaviside,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseHeavisideKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
153 154 155 156 157 158 159 160
PD_REGISTER_KERNEL(elementwise_pow,
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
PD_REGISTER_KERNEL(subtract,
                   CPU,
                   ALL_LAYOUT,
                   phi::SubtractKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   complex64,
                   complex128,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(add,
                   CPU,
                   ALL_LAYOUT,
                   phi::AddKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}

PD_REGISTER_KERNEL(multiply,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   complex64,
                   complex128,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(divide,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}

211
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
212

213
PD_REGISTER_KERNEL(maximum,
214
                   KPS,
215 216 217 218 219 220 221 222 223
                   ALL_LAYOUT,
                   phi::MaximumKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(minimum,
224
                   KPS,
225 226 227 228 229 230 231 232
                   ALL_LAYOUT,
                   phi::MinimumKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
C
Chen Weihang 已提交
233 234 235 236 237 238 239 240
PD_REGISTER_KERNEL(remainder,
                   GPU,
                   ALL_LAYOUT,
                   phi::RemainderKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
241
PD_REGISTER_KERNEL(
242
    floor_divide, KPS, ALL_LAYOUT, phi::FloorDivideKernel, int, int64_t) {}
243 244 245 246 247 248 249 250
PD_REGISTER_KERNEL(elementwise_heaviside,
                   GPU,
                   ALL_LAYOUT,
                   phi::ElementwiseHeavisideKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
251
PD_REGISTER_KERNEL(elementwise_pow,
252
                   KPS,
253 254 255 256 257 258
                   ALL_LAYOUT,
                   phi::ElementwisePowKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

#endif

#if defined(PADDLE_WITH_XPU_KP) && !defined(PADDLE_WITH_XPU)
PD_REGISTER_KERNEL(subtract, KPS, ALL_LAYOUT, phi::SubtractKernel, float) {}
PD_REGISTER_KERNEL(add, KPS, ALL_LAYOUT, phi::AddKernel, float) {}
PD_REGISTER_KERNEL(multiply, KPS, ALL_LAYOUT, phi::MultiplyKernel, float) {}
PD_REGISTER_KERNEL(divide, KPS, ALL_LAYOUT, phi::DivideKernel, float) {}
#elif defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(subtract,
                   KPS,
                   ALL_LAYOUT,
                   phi::SubtractKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   complex64,
                   complex128,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(add,
                   KPS,
                   ALL_LAYOUT,
                   phi::AddKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16,
                   complex64,
                   complex128) {}

PD_REGISTER_KERNEL(multiply,
                   KPS,
                   ALL_LAYOUT,
                   phi::MultiplyKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::float16,
                   phi::dtype::bfloat16,
                   complex64,
                   complex128) {}
PD_REGISTER_KERNEL(divide,
                   KPS,
                   ALL_LAYOUT,
                   phi::DivideKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16,
                   phi::dtype::bfloat16,
                   complex64,
                   complex128) {}
#endif

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)

PD_REGISTER_KERNEL(
    divide, XPU, ALL_LAYOUT, phi::DivideKernel, phi::dtype::float16, float) {}

PD_REGISTER_KERNEL(
    add, XPU, ALL_LAYOUT, phi::AddKernel, phi::dtype::float16, float) {}

PD_REGISTER_KERNEL(multiply,
                   XPU,
                   ALL_LAYOUT,
                   phi::MultiplyKernel,
                   phi::dtype::float16,
                   float) {}

338
#endif