mask_kernel.cu 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/mask_kernel.h"
16

17 18 19 20 21
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24
#include "paddle/phi/kernels/empty_kernel.h"
Z
zhangkaihuo 已提交
25
#include "paddle/phi/kernels/funcs/aligned_vector.h"
26
#include "paddle/phi/kernels/funcs/math_function.h"
27
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.cu.h"
28
#include "paddle/phi/kernels/funcs/sparse/utils.cu.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace phi {
namespace sparse {

template <typename T, typename IntT>
__global__ void MaskKernel(const T* x_ptr,
                           const IntT* indices_ptr,
                           const int64_t* sparse_offsets,
                           const int64_t non_zero_num,
                           const int cols,
                           const int sparse_dim,
                           T* out_values_ptr) {
  CUDA_KERNEL_LOOP_TYPE(i, non_zero_num * cols, int64_t) {
    int64_t out_i = i / cols;
    int64_t col_i = i - out_i * cols;
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
Z
zhangkaihuo 已提交
46
      index += indices_ptr[j * non_zero_num + out_i] * sparse_offsets[j];
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    }
    out_values_ptr[out_i * cols + col_i] = x_ptr[index * cols + col_i];
  }
}

template <typename T, typename IntT>
void SparseMaskGPUKernel(const GPUContext& dev_ctx,
                         const DenseTensor& x,
                         const SparseCooTensor& mask,
                         SparseCooTensor* out) {
  const DDim& dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x.dims(),
      mask.dims(),
      phi::errors::InvalidArgument("the input x and mask must have the shape"));
62
  const DenseTensor& indices = mask.indices();
63
  const DenseTensor& values = mask.values();
Z
zhangkaihuo 已提交
64
  const int sparse_dim = mask.sparse_dim();
65
  DenseTensor sparse_offsets = phi::Empty<GPUContext>(
66 67 68
      dev_ctx,
      DenseTensorMeta(DataType::INT64, {sparse_dim}, DataLayout::NCHW));
  std::vector<int64_t> h_sparse_offsets(sparse_dim);
Z
zhangkaihuo 已提交
69 70
  phi::funcs::sparse::CalcOffsetsPerDim(
      dims, sparse_dim, h_sparse_offsets.data());
71 72 73 74

  phi::backends::gpu::GpuMemcpyAsync(sparse_offsets.data<int64_t>(),
                                     &h_sparse_offsets[0],
                                     sizeof(int64_t) * sparse_dim,
Z
zhangkaihuo 已提交
75
                                     gpuMemcpyHostToDevice,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                                     dev_ctx.stream());

  DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices);
  DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values);

  phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices);

  const IntT* indices_ptr = indices.data<IntT>();
  T* out_values_ptr = out_values.data<T>();
  const T* x_ptr = x.data<T>();
  const int64_t non_zero_num = mask.nnz();
  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int cols = dims_2d[1];

  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num * cols, 1);
Z
zhangkaihuo 已提交
92 93 94 95 96 97 98 99 100
  MaskKernel<T, IntT>
      <<<config.block_per_grid, config.thread_per_block, 0, dev_ctx.stream()>>>(
          x_ptr,
          indices_ptr,
          sparse_offsets.data<int64_t>(),
          non_zero_num,
          cols,
          sparse_dim,
          out_values_ptr);
101 102 103 104 105 106

  out->SetMember(out_indices, out_values, dims, true);
}

/**
 * @brief Filter the DenseTensor x by the
107
 * mask.indices() and output a SparseCooTensor
108
 * x and mask must have the same shape.
109
 **/
110 111 112 113 114
template <typename T, typename Context>
void SparseMaskKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const SparseCooTensor& mask,
                      SparseCooTensor* out) {
Z
zhangkaihuo 已提交
115
  PD_VISIT_BASE_INTEGRAL_TYPES(
116
      mask.indices().dtype(), "SparseMaskGPUKernel", ([&] {
117 118 119 120
        SparseMaskGPUKernel<T, data_t>(dev_ctx, x, mask, out);
      }));
}

Z
zhangkaihuo 已提交
121
template <typename IntT>
122 123 124 125
__global__ void MaskTable(const IntT* x_indexs,
                          const int n,
                          int* index_flags,
                          int* table) {
Z
zhangkaihuo 已提交
126 127
  CUDA_KERNEL_LOOP_TYPE(i, n, int64_t) {
    int index = x_indexs[i];
128 129
    phi::funcs::sparse::SetBits(index, index_flags);
    table[index] = i;
Z
zhangkaihuo 已提交
130 131 132 133 134
  }
}

template <typename T, typename IntT, int VecSize>
__global__ void MaskCopy(const IntT* mask_indexs,
135
                         const int* index_flags,
Z
zhangkaihuo 已提交
136 137 138 139 140 141 142
                         const int* table,
                         const int n,
                         const int stride,
                         const T* x_values,
                         T* out_values) {
  using LoadT = phi::AlignedVector<T, VecSize>;
  using StoreT = phi::AlignedVector<T, VecSize>;
143
  CUDA_KERNEL_LOOP_TYPE(i, n, int64_t) {
144 145 146 147
    const int mask_index = mask_indexs[i];
    const bool flag = phi::funcs::sparse::TestBits(mask_index, index_flags);
    if (flag) {
      int j = table[mask_index];
Z
zhangkaihuo 已提交
148 149 150 151
      for (int k = 0; k < stride; k += VecSize) {
        LoadT vec_x;
        phi::Load<T, VecSize>(x_values + j * stride + k, &vec_x);
        phi::Store<T, VecSize>(vec_x, out_values + i * stride + k);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
      }
    }
  }
}

template <typename T, typename IntT>
void SparseMaskHelperGPUKernel(const GPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               const DenseTensor& mask_indices,
                               DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
      mask_indices.dims().size(),
      2,
      phi::errors::InvalidArgument("the mask_indices must be 2-D tensor"));

Z
zhangkaihuo 已提交
167
  const int32_t sparse_dim = x.sparse_dim();
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  auto indices_dtype = paddle::experimental::CppTypeToDataType<IntT>::Type();

  std::vector<IntT> sparse_offsets(sparse_dim);

  DenseTensorMeta x_indexs_meta(indices_dtype, {x.nnz()}, DataLayout::NCHW);
  DenseTensorMeta mask_indexs_meta(
      indices_dtype, {mask_indices.dims()[1]}, DataLayout::NCHW);
  DenseTensorMeta sparse_offset_meta(
      indices_dtype, {sparse_dim}, DataLayout::NCHW);

  DenseTensor x_indexs =
      phi::Empty<GPUContext>(dev_ctx, std::move(x_indexs_meta));
  DenseTensor mask_indexs =
      phi::Empty<GPUContext>(dev_ctx, std::move(mask_indexs_meta));
  DenseTensor bound_out =
      phi::Empty<GPUContext>(dev_ctx, std::move(mask_indexs_meta));
  DenseTensor d_sparse_offsets =
      phi::Empty<GPUContext>(dev_ctx, std::move(sparse_offset_meta));
  IntT* x_indexs_ptr = x_indexs.data<IntT>();
  IntT* mask_indexs_ptr = mask_indexs.data<IntT>();
  IntT* bound_out_ptr = bound_out.data<IntT>();

  // 1. calc the offsets of per dim
191 192
  phi::funcs::sparse::CalcOffsetsPerDim(
      x.dims(), sparse_dim, sparse_offsets.data());
193 194 195 196
  // 2. copy sparse_offsets to device
  phi::backends::gpu::GpuMemcpyAsync(d_sparse_offsets.data<IntT>(),
                                     sparse_offsets.data(),
                                     sizeof(IntT) * sparse_dim,
Z
zhangkaihuo 已提交
197
                                     gpuMemcpyHostToDevice,
198 199 200 201 202
                                     dev_ctx.stream());

  // 3. flatten x indices and mask indices
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_indexs.numel(), 1);
203 204 205 206
  phi::funcs::sparse::FlattenIndicesKernel<<<config.block_per_grid,
                                             config.thread_per_block,
                                             0,
                                             dev_ctx.stream()>>>(
207
      x.indices().data<IntT>(),
208 209 210 211
      d_sparse_offsets.data<IntT>(),
      x_indexs.numel(),
      sparse_dim,
      x_indexs_ptr);
212 213 214

  config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, mask_indexs.numel(), 1);
215 216 217 218 219 220 221 222 223
  phi::funcs::sparse::FlattenIndicesKernel<<<config.block_per_grid,
                                             config.thread_per_block,
                                             0,
                                             dev_ctx.stream()>>>(
      mask_indices.data<IntT>(),
      d_sparse_offsets.data<IntT>(),
      mask_indexs.numel(),
      sparse_dim,
      mask_indexs_ptr);
224

Z
zhangkaihuo 已提交
225 226
  int table_size = 1;
  auto x_dims = x.dims();
227
  for (int i = 0; i < sparse_dim; i++) {
Z
zhangkaihuo 已提交
228 229 230
    table_size *= x_dims[i];
  }
  DenseTensor table = phi::Empty<int>(dev_ctx, {table_size});
231 232 233 234 235
  DenseTensor index_flags = phi::Empty<int>(dev_ctx, {(table_size + 31) / 32});
  phi::backends::gpu::GpuMemsetAsync(index_flags.data<int>(),
                                     0,
                                     index_flags.numel() * sizeof(int),
                                     dev_ctx.stream());
Z
zhangkaihuo 已提交
236
  const int64_t stride =
237 238
      x.dims().size() == sparse_dim ? 1 : x.values().dims()[1];
  *out = phi::EmptyLike<T>(dev_ctx, x.values());
239 240 241
  phi::funcs::SetConstant<GPUContext, T> set_zero;
  set_zero(dev_ctx, out, static_cast<T>(0));
  T* out_ptr = out->data<T>();
Z
zhangkaihuo 已提交
242 243 244 245 246
  config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_indexs.numel(), 1);
  MaskTable<<<config.block_per_grid,
              config.thread_per_block,
              0,
247 248 249 250
              dev_ctx.stream()>>>(x_indexs_ptr,
                                  x_indexs.numel(),
                                  index_flags.data<int>(),
                                  table.data<int>());
Z
zhangkaihuo 已提交
251 252
  config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, mask_indexs.numel(), 1);
253

Z
zhangkaihuo 已提交
254 255 256
  const int VecBytes = 16;
  const int VecSize = VecBytes / sizeof(T);
  if (stride % VecSize == 0) {
257 258 259 260
    MaskCopy<T, IntT, VecSize><<<config.block_per_grid,
                                 config.thread_per_block,
                                 0,
                                 dev_ctx.stream()>>>(mask_indexs_ptr,
261
                                                     index_flags.data<int>(),
262 263 264 265 266
                                                     table.data<int>(),
                                                     mask_indexs.numel(),
                                                     stride,
                                                     x.values().data<T>(),
                                                     out_ptr);
Z
zhangkaihuo 已提交
267 268 269 270 271
  } else {
    MaskCopy<T, IntT, 1><<<config.block_per_grid,
                           config.thread_per_block,
                           0,
                           dev_ctx.stream()>>>(mask_indexs_ptr,
272
                                               index_flags.data<int>(),
Z
zhangkaihuo 已提交
273 274 275
                                               table.data<int>(),
                                               mask_indexs.numel(),
                                               stride,
276
                                               x.values().data<T>(),
Z
zhangkaihuo 已提交
277 278
                                               out_ptr);
  }
279 280 281 282 283 284 285
}

template <typename T, typename Context>
void SparseMaskHelperKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& mask_indices,
                            DenseTensor* out) {
Z
zhangkaihuo 已提交
286
  PD_VISIT_BASE_INTEGRAL_TYPES(
287
      x.indices().dtype(), "SparseMaskHelperGPUKernel", ([&] {
288 289 290 291
        SparseMaskHelperGPUKernel<T, data_t>(dev_ctx, x, mask_indices, out);
      }));
}

292 293 294
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
295
PD_REGISTER_KERNEL(mask,
296 297 298 299 300 301 302 303 304 305 306 307 308
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseMaskKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
309

Z
zhangkaihuo 已提交
310
PD_REGISTER_KERNEL(mask_helper,
311 312 313 314 315 316 317 318 319 320 321 322
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseMaskHelperKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}