fused_dropout_helper.h 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/fused/fused_dropout_act_bias.h"
#include "paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h"
#include "paddle/fluid/operators/fused/fused_residual_dropout_bias.h"
22
#include "paddle/phi/kernels/funcs/functors.h"
23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

/**
 * Support two Dropouts in the use senarieo.
 * This warpper can be used in FFN op.
 * The DropoutParam will be used in the fused_dropout_act_bias,
 * fused_residual_dropout_bias(pre_layer_norm=ture) or
 * fused_layernorm_residual_dropout_bias(pre_layer_norm=false).
33
 */
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
struct DropoutParam {
  uint64_t seed;
  float dropout_prob;
  bool is_upscale_in_train;
  bool is_test;
  bool fix_seed;
  int increment;
  const framework::Tensor* tensor_seed;
  int seed_val;

  DropoutParam() {
    fix_seed = false;
    seed = 0;
    is_test = false;
    is_upscale_in_train = false;
    dropout_prob = 0.5;
    tensor_seed = nullptr;
    seed_val = 0;
  }

54 55 56 57 58 59 60 61 62 63 64 65
  DropoutParam(bool fix_seed_, uint64_t seed_, bool is_test_,
               bool is_upscale_in_train_, float dropout_prob_,
               const framework::Tensor* tensor_seed_, int seed_val_) {
    fix_seed = fix_seed_;
    seed = seed_;
    is_test = is_test_;
    is_upscale_in_train = is_upscale_in_train_;
    dropout_prob = dropout_prob_;
    tensor_seed = tensor_seed_;
    seed_val = seed_val_;
  }

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  /**
   * dropout_index: can be 0, 1, 2. 0 means there is only one dropout,
   * 1 and 2 represent two dropout, the parameter name of dropout
   * will be "dropout" + dropout_index + param name, such as dropout1_seed,
   * dropout1_is_test.
   */
  DropoutParam(const framework::ExecutionContext& context,
               const int dropout_index) {
    std::string pre_fix = "dropout";
    std::string str_index = std::to_string(dropout_index);
    if (dropout_index > 0) {
      pre_fix = pre_fix + str_index + "_";
    } else {
      pre_fix = pre_fix + "_";
    }
L
Li Min 已提交
81
    dropout_prob = context.Attr<float>(pre_fix + "rate");
82 83 84
    auto& dropout_implementation =
        context.Attr<std::string>(pre_fix + "implementation");
    is_upscale_in_train = (dropout_implementation == "upscale_in_train");
L
Li Min 已提交
85
    is_test = context.Attr<bool>("is_test");
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    fix_seed = context.Attr<bool>(pre_fix + "fix_seed");

    std::string str_seed = "Dropout";
    if (dropout_index > 0) {
      str_seed = str_seed + str_index + "Seed";
    } else {
      str_seed = str_seed + "Seed";
    }
    tensor_seed =
        context.HasInput(str_seed) ? context.Input<Tensor>(str_seed) : nullptr;
    seed_val = context.Attr<int>(pre_fix + "seed");
  }

  int UpdateSeedAndIncrement(const platform::CUDADeviceContext& ctx,
                             const int offset) {
    uint64_t tmp_increment;
    GetSeedDataAndIncrement(ctx, tensor_seed, fix_seed, seed_val, offset, &seed,
                            &tmp_increment);
    increment = static_cast<int>(tmp_increment);
    return increment;
  }
};

template <typename T, typename MaskType>
class FusedDropoutHelper {
 private:
  int GetIncrement(const platform::CUDADeviceContext& ctx) {
    const int VecSize = MAX_CACHE_BYTES / sizeof(T);
    const int real_vec_size = cols_ % VecSize == 0 ? VecSize : 1;
    auto config =
        Get1DBlocksAnd2DGrids(ctx, static_cast<uint64_t>(rows_),
                              static_cast<uint64_t>(cols_), real_vec_size);
    int increment = ((cols_ - 1) / (config.thread_per_block.x *
                                    config.block_per_grid.x * real_vec_size) +
                     1) *
                    real_vec_size;
    increment = dropout_param_.UpdateSeedAndIncrement(ctx, increment);
    return increment;
  }

 public:
  FusedDropoutHelper() {}
  FusedDropoutHelper(const platform::CUDADeviceContext& ctx, const int rows,
                     const int cols, const DropoutParam& dropout_param) {
    rows_ = rows;
    cols_ = cols;
    dropout_param_ = dropout_param;
  }

  // out = residual + dropout( src + bias )
  void ResidualDropoutBias(const platform::CUDADeviceContext& ctx, const T* src,
                           const T* residual, const T* bias, T* out,
                           MaskType* mask) {
    auto increment = GetIncrement(ctx);
    LaunchResidualDropoutBias<T, MaskType>(
        rows_, cols_, increment, dropout_param_.seed,
        dropout_param_.dropout_prob, dropout_param_.is_test,
        dropout_param_.is_upscale_in_train, src, residual, bias, mask, out,
        ctx);
  }

  void ResidualDropoutBiasGrad(const platform::CUDADeviceContext& ctx,
                               const T* d_out, const MaskType* mask, T* d_src,
                               T* d_residual, T* d_bias) {
    LaunchResidualDropoutBiasGrad<T, uint8_t>(
        d_out, mask, dropout_param_.dropout_prob,
        dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx);
153 154 155 156
    if (d_residual) {
      memory::Copy(ctx.GetPlace(), d_residual, ctx.GetPlace(), d_out,
                   rows_ * cols_ * sizeof(T), ctx.stream());
    }
157 158 159 160 161 162 163 164 165 166 167 168 169 170
  }

  // out = dropout(activation(src + bias))
  void DropoutActBias(const platform::CUDADeviceContext& ctx, const T* src,
                      const T* bias, const std::string& act_method, T* out,
                      MaskType* mask) {
    auto increment = GetIncrement(ctx);
    if (act_method == "gelu") {
      GeluFunctor<T> gelu;
      LaunchDropoutActBias<T, MaskType, GeluFunctor<T>>(
          gelu, dropout_param_.seed, rows_, cols_, dropout_param_.increment,
          dropout_param_.dropout_prob, dropout_param_.is_upscale_in_train,
          dropout_param_.is_test, src, bias, out, mask, ctx);
    } else if (act_method == "relu") {
171 172
      phi::funcs::ReluFunctor<T> relu;
      LaunchDropoutActBias<T, MaskType, phi::funcs::ReluFunctor<T>>(
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
          relu, dropout_param_.seed, rows_, cols_, increment,
          dropout_param_.dropout_prob, dropout_param_.is_upscale_in_train,
          dropout_param_.is_test, src, bias, out, mask, ctx);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

  void DropoutActBiasGrad(const platform::CUDADeviceContext& ctx, const T* dout,
                          const T* src, const T* bias, const MaskType* mask,
                          T* d_src, T* d_bias, const std::string& act_method) {
    if (act_method == "gelu") {
      GeluGradFunctor<T> gelu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, GeluGradFunctor<T>>(
          gelu_grad, dout, mask, src, bias, dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx);
    } else if (act_method == "relu") {
191 192
      phi::funcs::ReluGradFunctor<T> relu_grad;
      LaunchDropoutActBiasGrad<T, MaskType, phi::funcs::ReluGradFunctor<T>>(
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
          relu_grad, dout, mask, src, bias, dropout_param_.dropout_prob,
          dropout_param_.is_upscale_in_train, rows_, cols_, d_src, d_bias, ctx);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently only supports gelu or relu activation functions!"));
    }
  }

 protected:
  int rows_;
  int cols_;
  DropoutParam dropout_param_;
};

template <typename T, typename MaskType>
class FusedDropoutLayerNormHelper : public FusedDropoutHelper<T, MaskType> {
 public:
  FusedDropoutLayerNormHelper() {}
  FusedDropoutLayerNormHelper(const int rows, const int cols,
                              const float epsilon) {
    using U = LayerNormParamType<T>;
    this->rows_ = rows;
    this->cols_ = cols;
    epsilon_ = epsilon;
  }

  FusedDropoutLayerNormHelper(const platform::CUDADeviceContext& ctx,
                              const int rows, const int cols,
                              const DropoutParam& dropout_param,
                              const float epsilon)
      : FusedDropoutHelper<T, MaskType>(ctx, rows, cols, dropout_param) {
    using U = LayerNormParamType<T>;
    epsilon_ = epsilon;
  }

  // call layer_norm
  void LayerNorm(const platform::CUDADeviceContext& ctx, const T* src,
                 const LayerNormParamType<T>* gamma,
                 const LayerNormParamType<T>* beta, T* out,
                 LayerNormParamType<T>* mean, LayerNormParamType<T>* variance) {
    using U = LayerNormParamType<T>;
    switch (GetDesiredBlockDim(this->cols_)) {
      FIXED_BLOCK_DIM_CASE(
236 237
          LayerNormForward<T, U, kBlockDim>
          <<<this->rows_, kBlockDim, 0, ctx.stream()>>>(
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
              src, gamma, beta, out, mean, variance, epsilon_, this->cols_));
    }
  }

  void LayerNormGrad(const platform::CUDADeviceContext& ctx, const T* dout,
                     const T* src, const LayerNormParamType<T>* gamma,
                     const LayerNormParamType<T>* mean,
                     const LayerNormParamType<T>* variance, T* d_src,
                     LayerNormParamType<T>* d_scale,
                     LayerNormParamType<T>* d_bias) {
    using U = LayerNormParamType<T>;
    LayerNormBackward<T, U>(src, dout, gamma, mean, variance, d_src, d_scale,
                            d_bias, epsilon_, this->rows_, this->cols_, ctx);
  }

  // out = layernorm(residual + dropout(src + bias))
254 255 256 257 258 259 260 261
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
  void LayernormResidualDropoutBias(const platform::CUDADeviceContext& ctx,
                                    const T* src, const T* residual,
                                    const T* bias, const P* gamma,
                                    const P* beta, T* dropout_out,
                                    MaskType* mask, T* out,
                                    LayerNormParamType<T>* mean,
                                    LayerNormParamType<T>* variance) {
262 263 264 265 266 267 268 269
    using U = LayerNormParamType<T>;
    int vec_size = MAX_CACHE_BYTES / sizeof(T);
    if (this->cols_ % vec_size != 0) {
      vec_size = 1;
    }
    int threads = GetDesiredBlockDim(this->cols_ / vec_size);
    int increment = ((this->cols_ - 1) / (threads * vec_size) + 1) * vec_size;
    increment = this->dropout_param_.UpdateSeedAndIncrement(ctx, increment);
270
    LaunchLayernormResidualDropoutBias<T, MaskType, U, is_same_type>(
271 272 273 274 275 276 277
        this->rows_, this->cols_, increment, this->dropout_param_.seed,
        this->dropout_param_.dropout_prob, epsilon_,
        this->dropout_param_.is_upscale_in_train, this->dropout_param_.is_test,
        src, residual, bias, gamma, beta, mask, dropout_out, out, mean,
        variance, ctx);
  }

278 279 280 281 282 283 284 285 286
  template <typename P = LayerNormParamType<T>, bool is_same_type = false>
  void LayernormResidualDropoutBiasGrad(const platform::CUDADeviceContext& ctx,
                                        const T* d_out, const T* layernorm_src,
                                        const MaskType* mask, const P* gamma,
                                        const LayerNormParamType<T>* mean,
                                        const LayerNormParamType<T>* variance,
                                        T* d_layernorm_src, P* d_scale,
                                        P* d_layernorm_bias, T* d_dropout_src,
                                        T* d_bias, T* d_residual) {
287
    using U = LayerNormParamType<T>;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    bool can_call_1024_kernel = false;
    // Fast impl for cases when cols is 1024 and linear_bias is nullptr.
    // In fact, linear_bias is not nullptr is also feasible for impl.
    // Here, we do not support it.
    if (this->cols_ == 1024 && d_bias == nullptr && d_scale != nullptr &&
        d_layernorm_bias != nullptr && sizeof(T) <= 4) {
      can_call_1024_kernel = true;
    }
    VLOG(6) << "LaunchLayernormResidualDropoutGrad = " << can_call_1024_kernel;

    if (can_call_1024_kernel) {
      LaunchLayernormResidualDropoutGrad<T, U, MaskType, is_same_type>(
          ctx, this->rows_, this->cols_, epsilon_,
          this->dropout_param_.dropout_prob,
          this->dropout_param_.is_upscale_in_train, d_out, layernorm_src, gamma,
          mean, variance, mask, d_scale, d_layernorm_bias, d_residual,
          d_dropout_src);
    } else {
      LayerNormBackward<T, U, is_same_type>(
          layernorm_src, d_out, gamma, mean, variance, d_layernorm_src, d_scale,
          d_layernorm_bias, epsilon_, this->rows_, this->cols_, ctx);
      this->ResidualDropoutBiasGrad(ctx, d_layernorm_src, mask, d_dropout_src,
                                    d_residual, d_bias);
    }
312 313 314 315 316 317 318 319
  }

 protected:
  float epsilon_;
};

}  // namespace operators
}  // namespace paddle