all_reduce_op_handle.cc 7.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
15
#include <algorithm>
C
chengduoZH 已提交
16
#include "paddle/fluid/framework/details/container_cast.h"
C
chengduoZH 已提交
17
#include "paddle/fluid/framework/details/reduce_and_gather.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/variable_visitor.h"
19 20
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/gpu_info.h"
21
#include "paddle/fluid/platform/profiler.h"
Y
Stash  
Yu Yang 已提交
22

23 24 25
#ifdef PADDLE_WITH_CUDA
DECLARE_bool(sync_nccl_allreduce);
#endif
Y
Yancey1989 已提交
26

Y
Yu Yang 已提交
27 28 29
namespace paddle {
namespace framework {
namespace details {
C
chengduoZH 已提交
30

P
peizhilin 已提交
31
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
32 33
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
34
                                     const std::vector<platform::Place> &places,
35
                                     const platform::NCCLCommunicator *ctxs)
36 37
    : NCCLOpHandleBase(node, places, ctxs), local_scopes_(local_scopes) {
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
Y
Yu Yang 已提交
38
}
C
chengduoZH 已提交
39
#else
X
Xin Pan 已提交
40 41
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
42
                                     const std::vector<platform::Place> &places)
43 44 45
    : OpHandleBase(node), local_scopes_(local_scopes), places_(places) {
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
C
chengduoZH 已提交
46
#endif
Y
Yu Yang 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
void AllReduceOpHandle::RunImpl() {
  platform::RecordEvent record_event(Name());

  WaitInputVarGenerated();
  std::vector<VarHandleBase *> inputs = this->Inputs();
  std::vector<VarHandleBase *> outputs = this->Outputs();
  auto in_var_handles = DynamicCast<VarHandle>(inputs);
  auto out_var_handles = DynamicCast<VarHandle>(outputs);
  AllReduceImpl(in_var_handles, out_var_handles);
}

void AllReduceOpHandle::AllReduceImpl(
    const std::vector<VarHandle *> &in_var_handles,
    const std::vector<VarHandle *> &out_var_handles) {
  size_t num_places = places_.size();
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), num_places,
      "The NoDummyInputSize should be equal to the number of places.");
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), out_var_handles.size(),
      "The NoDummyInputSize and NoDummyOutputSize should be equal.");
  PADDLE_ENFORCE_EQ(local_exec_scopes_.size(), num_places);

  std::vector<const void *> lod_tensor_data;
  std::vector<platform::Place> places;
  lod_tensor_data.reserve(num_places);
  places.reserve(num_places);
  int64_t numel = -1;
  bool is_gpu_place = false;
  auto dtype = static_cast<framework::proto::VarType::Type>(0);
  for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
    auto &local_scope = local_exec_scopes_[i];
    auto var = local_scope->FindVar(in_var_handles[i]->name());
    PADDLE_ENFORCE_NOT_NULL(var, "%s is not found int scope.",
                            in_var_handles[i]->name());
    auto &lod_tensor = var->Get<LoDTensor>();

    if (i == 0) {
      numel = static_cast<int64_t>(lod_tensor.numel());
87 88 89 90 91
      // only enforce place0, we will enforce other palce numel == place0 numel
      PADDLE_ENFORCE_GT(
          numel, 0, platform::errors::InvalidArgument(
                        "The numel of tensos=[%s] must > 0. But now numel=[%d]",
                        in_var_handles[i]->name(), numel));
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
      dtype = lod_tensor.type();
      is_gpu_place = platform::is_gpu_place(lod_tensor.place());
    }
    PADDLE_ENFORCE_EQ(numel, static_cast<int64_t>(lod_tensor.numel()));
    PADDLE_ENFORCE_EQ(dtype, lod_tensor.type());
    PADDLE_ENFORCE_EQ(is_gpu_place, platform::is_gpu_place(lod_tensor.place()));

    lod_tensor_data.emplace_back(lod_tensor.data<void>());
    places.emplace_back(lod_tensor.place());

    VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
             << ", out_name:" << out_var_handles[i]->name();

    PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
                      "The name of input and output should be equal.");
  }

  std::vector<std::string> grad_var_names;
  grad_var_names.reserve(num_places);
  for (auto &out_var : out_var_handles) {
    grad_var_names.emplace_back(out_var->Name());
  }

  AllReduceFunc(lod_tensor_data, dtype, numel, places, grad_var_names);
}

void AllReduceOpHandle::AllReduceFunc(
    std::vector<const void *> lod_tensor_data,
    const framework::proto::VarType::Type &dtype, int64_t numel,
    const std::vector<platform::Place> &places,
    const std::vector<std::string> &out_var_names) {
  if (is_gpu_place(places[0])) {
124
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    PADDLE_ENFORCE_NOT_NULL(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
    ncclDataType_t nccl_dtype = platform::ToNCCLDataType(dtype);
    std::vector<std::function<void()>> all_reduce_calls;
    for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
      auto &p = places[i];
      void *buffer = const_cast<void *>(lod_tensor_data.at(i));
      all_reduce_calls.emplace_back([=] {
        NCCLAllReduce(p, buffer, buffer, numel, nccl_dtype, ncclSum);
      });
    }
    NCCLAllReduceFunc(all_reduce_calls);
#else
    PADDLE_THROW("Not compiled with CUDA.");
#endif
  } else {  // Special handle CPU only Operator's gradient. Like CRF
    auto &trg = *local_exec_scopes_[0]
                     ->FindVar(out_var_names[0])
                     ->GetMutable<LoDTensor>();

    // Reduce All Tensor to trg in CPU
    ReduceBufferData func(lod_tensor_data, trg.data<void>(), numel);
    VisitDataType(trg.type(), func);

    for (size_t i = 1; i < local_exec_scopes_.size(); ++i) {
      auto &scope = local_exec_scopes_[i];
      auto &p = places[i];
      auto *var = scope->FindVar(out_var_names[i]);

      size_t size = numel * SizeOfType(trg.type());
      RunAndRecordEvent(p, [&trg, var, p, size] {
        auto dst_ptr = var->GetMutable<framework::LoDTensor>()->data<void>();
        platform::CPUPlace cpu_place;
        memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data<void>(), size);
      });
    }
  }
  VLOG(10) << Name() << " size:" << numel * SizeOfType(dtype);
}

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
void AllReduceOpHandle::NCCLAllReduceFunc(
G
gongweibao 已提交
166
    const std::vector<std::function<void()>> &all_reduce_calls) {
167 168 169 170 171 172 173 174 175 176 177 178
  this->RunAndRecordEvent([&] {
    if (all_reduce_calls.size() == 1UL) {
      // Do not use NCCLGroup when manage NCCL by per thread per device
      all_reduce_calls[0]();
    } else {
      platform::NCCLGroupGuard guard;
      for (auto &call : all_reduce_calls) {
        call();
      }
    }
  });

179 180 181 182
  SyncNCCLAllReduce();
}

void AllReduceOpHandle::SyncNCCLAllReduce() {
183 184 185
  if (FLAGS_sync_nccl_allreduce) {
    for (auto &p : places_) {
      int dev_id = boost::get<platform::CUDAPlace>(p).device;
186 187 188
      auto *nccl_ctxs =
          nccl_ctxs_->GetRunEnvNCCLCtx(run_order_, use_hierarchical_allreduce_);
      auto &nccl_ctx = nccl_ctxs->at(dev_id);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      auto stream = nccl_ctx.stream();
      cudaError_t e_sync = cudaStreamSynchronize(stream);
      if (e_sync != 0) {
        LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
      }

      cudaError_t e_get = cudaGetLastError();
      if (e_get != 0) {
        LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
                   << " errno:" << e_get;
      }
    }
  }
}
#endif

C
chengduoZH 已提交
205
std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
Y
Yu Yang 已提交
206 207 208
}  // namespace details
}  // namespace framework
}  // namespace paddle