// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/all_reduce_op_handle.h" #include #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/variable_visitor.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/profiler.h" #ifdef PADDLE_WITH_CUDA DECLARE_bool(sync_nccl_allreduce); #endif namespace paddle { namespace framework { namespace details { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, const std::vector &local_scopes, const std::vector &places, const platform::NCCLCommunicator *ctxs) : NCCLOpHandleBase(node, places, ctxs), local_scopes_(local_scopes) { PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size()); } #else AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, const std::vector &local_scopes, const std::vector &places) : OpHandleBase(node), local_scopes_(local_scopes), places_(places) { PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size()); } #endif void AllReduceOpHandle::RunImpl() { platform::RecordEvent record_event(Name()); WaitInputVarGenerated(); std::vector inputs = this->Inputs(); std::vector outputs = this->Outputs(); auto in_var_handles = DynamicCast(inputs); auto out_var_handles = DynamicCast(outputs); AllReduceImpl(in_var_handles, out_var_handles); } void AllReduceOpHandle::AllReduceImpl( const std::vector &in_var_handles, const std::vector &out_var_handles) { size_t num_places = places_.size(); PADDLE_ENFORCE_EQ( in_var_handles.size(), num_places, "The NoDummyInputSize should be equal to the number of places."); PADDLE_ENFORCE_EQ( in_var_handles.size(), out_var_handles.size(), "The NoDummyInputSize and NoDummyOutputSize should be equal."); PADDLE_ENFORCE_EQ(local_exec_scopes_.size(), num_places); std::vector lod_tensor_data; std::vector places; lod_tensor_data.reserve(num_places); places.reserve(num_places); int64_t numel = -1; bool is_gpu_place = false; auto dtype = static_cast(0); for (size_t i = 0; i < local_exec_scopes_.size(); ++i) { auto &local_scope = local_exec_scopes_[i]; auto var = local_scope->FindVar(in_var_handles[i]->name()); PADDLE_ENFORCE_NOT_NULL(var, "%s is not found int scope.", in_var_handles[i]->name()); auto &lod_tensor = var->Get(); if (i == 0) { numel = static_cast(lod_tensor.numel()); // only enforce place0, we will enforce other palce numel == place0 numel PADDLE_ENFORCE_GT( numel, 0, platform::errors::InvalidArgument( "The numel of tensos=[%s] must > 0. But now numel=[%d]", in_var_handles[i]->name(), numel)); dtype = lod_tensor.type(); is_gpu_place = platform::is_gpu_place(lod_tensor.place()); } PADDLE_ENFORCE_EQ(numel, static_cast(lod_tensor.numel())); PADDLE_ENFORCE_EQ(dtype, lod_tensor.type()); PADDLE_ENFORCE_EQ(is_gpu_place, platform::is_gpu_place(lod_tensor.place())); lod_tensor_data.emplace_back(lod_tensor.data()); places.emplace_back(lod_tensor.place()); VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name() << ", out_name:" << out_var_handles[i]->name(); PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(), "The name of input and output should be equal."); } std::vector grad_var_names; grad_var_names.reserve(num_places); for (auto &out_var : out_var_handles) { grad_var_names.emplace_back(out_var->Name()); } AllReduceFunc(lod_tensor_data, dtype, numel, places, grad_var_names); } void AllReduceOpHandle::AllReduceFunc( std::vector lod_tensor_data, const framework::proto::VarType::Type &dtype, int64_t numel, const std::vector &places, const std::vector &out_var_names) { if (is_gpu_place(places[0])) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) PADDLE_ENFORCE_NOT_NULL(nccl_ctxs_, "nccl_ctxs should not be nullptr."); ncclDataType_t nccl_dtype = platform::ToNCCLDataType(dtype); std::vector> all_reduce_calls; for (size_t i = 0; i < local_exec_scopes_.size(); ++i) { auto &p = places[i]; void *buffer = const_cast(lod_tensor_data.at(i)); all_reduce_calls.emplace_back([=] { NCCLAllReduce(p, buffer, buffer, numel, nccl_dtype, ncclSum); }); } NCCLAllReduceFunc(all_reduce_calls); #else PADDLE_THROW("Not compiled with CUDA."); #endif } else { // Special handle CPU only Operator's gradient. Like CRF auto &trg = *local_exec_scopes_[0] ->FindVar(out_var_names[0]) ->GetMutable(); // Reduce All Tensor to trg in CPU ReduceBufferData func(lod_tensor_data, trg.data(), numel); VisitDataType(trg.type(), func); for (size_t i = 1; i < local_exec_scopes_.size(); ++i) { auto &scope = local_exec_scopes_[i]; auto &p = places[i]; auto *var = scope->FindVar(out_var_names[i]); size_t size = numel * SizeOfType(trg.type()); RunAndRecordEvent(p, [&trg, var, p, size] { auto dst_ptr = var->GetMutable()->data(); platform::CPUPlace cpu_place; memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data(), size); }); } } VLOG(10) << Name() << " size:" << numel * SizeOfType(dtype); } #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) void AllReduceOpHandle::NCCLAllReduceFunc( const std::vector> &all_reduce_calls) { this->RunAndRecordEvent([&] { if (all_reduce_calls.size() == 1UL) { // Do not use NCCLGroup when manage NCCL by per thread per device all_reduce_calls[0](); } else { platform::NCCLGroupGuard guard; for (auto &call : all_reduce_calls) { call(); } } }); SyncNCCLAllReduce(); } void AllReduceOpHandle::SyncNCCLAllReduce() { if (FLAGS_sync_nccl_allreduce) { for (auto &p : places_) { int dev_id = boost::get(p).device; auto *nccl_ctxs = nccl_ctxs_->GetRunEnvNCCLCtx(run_order_, use_hierarchical_allreduce_); auto &nccl_ctx = nccl_ctxs->at(dev_id); auto stream = nccl_ctx.stream(); cudaError_t e_sync = cudaStreamSynchronize(stream); if (e_sync != 0) { LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync); } cudaError_t e_get = cudaGetLastError(); if (e_get != 0) { LOG(FATAL) << "cudaGetLastError " << cudaGetErrorString(e_get) << " errno:" << e_get; } } } } #endif std::string AllReduceOpHandle::Name() const { return "all_reduce"; } } // namespace details } // namespace framework } // namespace paddle