test_reduce_op.py 31.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle
21 22 23
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
G
guosheng 已提交
25 26


27
class TestSumOp(OpTest):
G
guosheng 已提交
28
    def setUp(self):
29
        self.op_type = "reduce_sum"
30
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
31
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
32 33 34 35 36 37 38 39

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class TestSumOp_fp16(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.uniform(0, 0.1, (5, 6, 10)).astype("float16")
        }
        self.attrs = {'dim': [0, 1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        self.check_output()

    def calc_gradient(self):
        x = self.inputs["X"]
        grad = np.ones(x.shape, dtype=x.dtype)
        return grad,

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSumOp_bf16(OpTest):
    def setUp(self):
        np.random.seed(100)
        self.op_type = "reduce_sum"
        self.dtype = np.uint16
        self.x = np.random.uniform(0, 0.1, (2, 5, 10)).astype(np.float32)
        self.attrs = {'dim': [0, 1, 2]}
        self.out = self.x.sum(axis=tuple(self.attrs['dim']))
        self.gradient = self.calc_gradient()

        self.inputs = {'X': convert_float_to_uint16(self.x)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(
            place, ['X'], 'Out', user_defined_grads=self.gradient)

    def calc_gradient(self):
        x = self.x
        grad = np.ones(x.shape, dtype=x.dtype)
        return [grad]


95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class TestSumOp_fp16_withInt(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            # ref to https://en.wikipedia.org/wiki/Half-precision_floating-point_format
            # Precision limitations on integer values between 0 and 2048 can be exactly represented
            'X': np.random.randint(0, 30, (10, 10)).astype("float16")
        }
        self.attrs = {'dim': [0, 1]}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
        self.gradient = self.calc_gradient()

    def test_check_output(self):
        self.check_output()

    def calc_gradient(self):
        x = self.inputs["X"]
        grad = np.ones(x.shape, dtype=x.dtype)
        return grad,

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', user_defined_grads=self.gradient)


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class TestSumOp5D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestSumOp6D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64")
        }
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
143

144 145
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
146

147 148
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
149 150


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
class TestSumOp8D(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((1, 3, 1, 2, 1, 4, 3, 10)).astype("float64")
        }
        self.attrs = {'dim': (0, 3)}
        self.outputs = {'Out': self.inputs['X'].sum(axis=(0, 3))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


167 168 169
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
170 171
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
172 173

    def setUp(self):
174
        self.op_type = "reduce_max"
175
        self.python_api = paddle.max
176
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
177 178 179 180
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
181 182

    def test_check_output(self):
183
        self.check_output(check_eager=True)
G
guosheng 已提交
184 185


186 187 188
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
189 190
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
191

192 193
    def setUp(self):
        self.op_type = "reduce_min"
194
        self.python_api = paddle.min
195
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
196 197 198 199
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
200

201
    def test_check_output(self):
202
        self.check_output(check_eager=True)
G
guosheng 已提交
203 204


205 206 207 208 209
class TestMin6DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
210
        self.python_api = paddle.min
211 212 213 214 215 216 217 218 219
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 10)).astype("float64")
        }
        self.attrs = {'dim': [2, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
220
        self.check_output(check_eager=True)
221 222 223 224 225 226 227


class TestMin8DOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
228
        self.python_api = paddle.min
229 230 231 232 233 234 235 236 237
        self.inputs = {
            'X': np.random.random((2, 4, 3, 5, 6, 3, 2, 4)).astype("float64")
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
238
        self.check_output(check_eager=True)
239 240


241 242 243
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
244 245
        self.init_data_type()
        self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)}
246 247
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

248 249 250 251
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

252 253 254 255 256 257 258
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


259 260 261
class TestProd6DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
262
        self.init_data_type()
263
        self.inputs = {
264
            'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type)
265 266 267 268 269 270
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

271 272 273 274
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

275 276 277 278 279 280 281 282 283 284
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestProd8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
285
        self.init_data_type()
286
        self.inputs = {
287 288
            'X': np.random.random(
                (2, 5, 3, 2, 2, 3, 4, 2)).astype(self.data_type)
289 290 291 292 293 294
        }
        self.attrs = {'dim': [2, 3, 4]}
        self.outputs = {
            'Out': self.inputs['X'].prod(axis=tuple(self.attrs['dim']))
        }

295 296 297 298
    def init_data_type(self):
        self.data_type = "float32" if core.is_compiled_with_rocm(
        ) else "float64"

299 300 301 302 303 304 305
    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
306 307 308
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
309
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
310 311 312 313 314
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
315
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
316 317


318 319 320
class TestAll8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
321
        self.python_api = paddle.all
322 323 324 325 326 327 328 329
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (2, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
330
        self.check_output(check_eager=True)
331 332


Z
zhoukunsheng 已提交
333 334 335
class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
336
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
337
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
338 339 340 341
        self.attrs = {'dim': (1, )}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}

    def test_check_output(self):
342
        self.check_output(check_eager=True)
343 344 345 346 347


class TestAll8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
348
        self.python_api = paddle.all
349 350 351 352 353 354
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, 3, 4)}
        self.outputs = {'Out': self.inputs['X'].all(axis=self.attrs['dim'])}
Z
zhoukunsheng 已提交
355 356

    def test_check_output(self):
357
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
358 359 360 361 362


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
363
        self.python_api = paddle.all
Z
zhoukunsheng 已提交
364 365 366 367 368 369 370 371
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
372
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
373 374


375 376 377
class TestAll8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
378
        self.python_api = paddle.all
379 380 381 382 383 384 385 386 387 388 389
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (5, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=self.attrs['dim']), axis=5)
        }

    def test_check_output(self):
390
        self.check_output(check_eager=True)
391 392


393 394 395 396 397 398 399 400 401 402 403 404
class TestAllOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_all_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_all, input1)
            # The input dtype of reduce_all_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_all, input2)


Z
zhoukunsheng 已提交
405 406 407
class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
408
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
409 410 411 412 413
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
414
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
415 416


417 418 419
class TestAny8DOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
420
        self.python_api = paddle.any
421 422 423 424 425 426 427 428
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'reduce_all': True, 'dim': (3, 5, 4)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
429
        self.check_output(check_eager=True)
430 431


Z
zhoukunsheng 已提交
432 433 434
class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
435
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
436 437 438 439 440
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
441
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
442 443


444 445 446
class TestAny8DOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
447
        self.python_api = paddle.any
448 449 450 451 452 453 454 455
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (3, 6)}
        self.outputs = {'Out': self.inputs['X'].any(axis=self.attrs['dim'])}

    def test_check_output(self):
456
        self.check_output(check_eager=True)
457 458


Z
zhoukunsheng 已提交
459 460 461
class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
462
        self.python_api = paddle.any
Z
zhoukunsheng 已提交
463
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
464 465 466 467 468 469 470
        self.attrs = {'dim': (1, ), 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
        }

    def test_check_output(self):
471
        self.check_output(check_eager=True)
472 473 474 475 476


class TestAny8DOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
477
        self.python_api = paddle.any
478 479 480 481 482
        self.inputs = {
            'X': np.random.randint(0, 2,
                                   (2, 5, 3, 2, 2, 3, 4, 2)).astype("bool")
        }
        self.attrs = {'dim': (1, ), 'keep_dim': True}
Z
zhoukunsheng 已提交
483 484
        self.outputs = {
            'Out': np.expand_dims(
485
                self.inputs['X'].any(axis=self.attrs['dim']), axis=1)
Z
zhoukunsheng 已提交
486 487 488
        }

    def test_check_output(self):
489
        self.check_output(check_eager=True)
Z
zhoukunsheng 已提交
490 491


492 493 494 495 496 497 498 499 500 501 502 503
class TestAnyOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_any_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.reduce_any, input1)
            # The input dtype of reduce_any_op must be bool.
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.reduce_any, input2)


Q
qiaolongfei 已提交
504
class Test1DReduce(OpTest):
G
guosheng 已提交
505
    def setUp(self):
506
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
507
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
508
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
509 510 511

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
512

513 514
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
515 516


Q
qiaolongfei 已提交
517
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
518
    def setUp(self):
519
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
520 521
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
522 523 524
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
525 526 527 528 529
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
573 574


575 576 577 578 579 580 581 582 583 584 585 586
class Test8DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': (4, 2, 3)}
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


Q
qiaolongfei 已提交
587 588 589 590
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
591
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
592 593 594 595 596 597
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


598 599 600 601 602 603 604 605 606 607 608 609 610
class TestKeepDim8DReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {
            'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype("float64")
        }
        self.attrs = {'dim': (3, 4, 5), 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


611 612 613
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
614 615 616 617 618
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
619
        self.python_api = paddle.max
W
whs 已提交
620 621 622 623 624 625 626
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
627
        self.check_output(check_eager=True)
W
whs 已提交
628 629


630 631 632
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
633 634 635 636 637
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
638
        self.python_api = paddle.min
W
whs 已提交
639 640 641 642 643 644 645
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
646
        self.check_output(check_eager=True)
W
whs 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


666 667 668
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
669
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
686
        self.inputs = {'X': np.random.random((100, 1)).astype("float64")}
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
703
        self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")}
704 705 706 707 708 709 710 711 712 713
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


714 715 716
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
717
        self.inputs = {'X': np.random.random(100).astype("float64")}
718 719 720 721 722 723 724 725 726 727
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
class TestReduceWithDtype(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum().astype('float64')}
        self.attrs = {'reduce_all': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceWithDtype1(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1)}
        self.attrs = {'dim': [1]}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


class TestReduceWithDtype2(TestReduceWithDtype):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.attrs.update({
            'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)),
            'out_dtype': int(convert_np_dtype_to_dtype_(np.float64))
        })


770
class TestReduceSumOpError(unittest.TestCase):
771 772 773 774 775 776 777 778 779 780 781
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


782
class API_TestSumOp(unittest.TestCase):
783 784 785 786 787 788 789 790
    def run_static(self,
                   shape,
                   x_dtype,
                   attr_axis,
                   attr_dtype=None,
                   np_axis=None):
        if np_axis is None:
            np_axis = attr_axis
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data = fluid.data("data", shape=shape, dtype=x_dtype)
                result_sum = paddle.sum(x=data,
                                        axis=attr_axis,
                                        dtype=attr_dtype)

                exe = fluid.Executor(place)
                input_data = np.random.rand(*shape).astype(x_dtype)
                res, = exe.run(feed={"data": input_data},
                               fetch_list=[result_sum])

            self.assertTrue(
                np.allclose(
                    res, np.sum(input_data.astype(attr_dtype), axis=np_axis)))
810

811 812 813 814
    def test_static(self):
        shape = [10, 10]
        axis = 1

815 816 817
        self.run_static(shape, "bool", axis, attr_dtype=None)
        self.run_static(shape, "bool", axis, attr_dtype="int32")
        self.run_static(shape, "bool", axis, attr_dtype="int64")
818
        self.run_static(shape, "bool", axis, attr_dtype="float16")
819

820 821 822
        self.run_static(shape, "int32", axis, attr_dtype=None)
        self.run_static(shape, "int32", axis, attr_dtype="int32")
        self.run_static(shape, "int32", axis, attr_dtype="int64")
823
        self.run_static(shape, "int32", axis, attr_dtype="float64")
824

825 826 827 828
        self.run_static(shape, "int64", axis, attr_dtype=None)
        self.run_static(shape, "int64", axis, attr_dtype="int64")
        self.run_static(shape, "int64", axis, attr_dtype="int32")

829 830 831
        self.run_static(shape, "float32", axis, attr_dtype=None)
        self.run_static(shape, "float32", axis, attr_dtype="float32")
        self.run_static(shape, "float32", axis, attr_dtype="float64")
832
        self.run_static(shape, "float32", axis, attr_dtype="int64")
833 834 835 836

        self.run_static(shape, "float64", axis, attr_dtype=None)
        self.run_static(shape, "float64", axis, attr_dtype="float32")
        self.run_static(shape, "float64", axis, attr_dtype="float64")
837 838 839 840 841

        shape = [5, 5, 5]
        self.run_static(shape, "int32", (0, 1), attr_dtype="int32")
        self.run_static(
            shape, "int32", (), attr_dtype="int32", np_axis=(0, 1, 2))
842 843 844

    def test_dygraph(self):
        np_x = np.random.random([2, 3, 4]).astype('int32')
845 846
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np_x)
847 848 849 850 851 852 853 854 855
            out0 = paddle.sum(x).numpy()
            out1 = paddle.sum(x, axis=0).numpy()
            out2 = paddle.sum(x, axis=(0, 1)).numpy()
            out3 = paddle.sum(x, axis=(0, 1, 2)).numpy()

        self.assertTrue((out0 == np.sum(np_x, axis=(0, 1, 2))).all())
        self.assertTrue((out1 == np.sum(np_x, axis=0)).all())
        self.assertTrue((out2 == np.sum(np_x, axis=(0, 1))).all())
        self.assertTrue((out3 == np.sum(np_x, axis=(0, 1, 2))).all())
856 857


858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
class TestAllAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.all(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.all(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.all(x)
                np_out1 = out1.numpy()
                expect_res1 = np.all(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.all(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.all(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.all(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.all(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.all(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.all(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


class TestAnyAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        paddle.enable_static()
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[4, 4], dtype="bool")
            result = paddle.any(x=input)
            input_np = np.random.randint(0, 2, [4, 4]).astype("bool")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], np.any(input_np)))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        paddle.disable_static()
        for place in self.places:
            with fluid.dygraph.guard(place):
                np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
                x = fluid.layers.assign(np_x)
                x = fluid.layers.cast(x, 'bool')

                out1 = paddle.any(x)
                np_out1 = out1.numpy()
                expect_res1 = np.any(np_x)
                self.assertTrue((np_out1 == expect_res1).all())

                out2 = paddle.any(x, axis=0)
                np_out2 = out2.numpy()
                expect_res2 = np.any(np_x, axis=0)
                self.assertTrue((np_out2 == expect_res2).all())

                out3 = paddle.any(x, axis=-1)
                np_out3 = out3.numpy()
                expect_res3 = np.any(np_x, axis=-1)
                self.assertTrue((np_out3 == expect_res3).all())

                out4 = paddle.any(x, axis=1, keepdim=True)
                np_out4 = out4.numpy()
                expect_res4 = np.any(np_x, axis=1, keepdims=True)
                self.assertTrue((np_out4 == expect_res4).all())

        paddle.enable_static()


G
guosheng 已提交
968
if __name__ == '__main__':
969 970
    import paddle
    paddle.enable_static()
G
guosheng 已提交
971
    unittest.main()