dataloader_iter.py 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import time
import signal
19
import numbers
20 21 22 23
import logging
import itertools
import threading
import numpy as np
24
from collections import namedtuple
25 26 27 28 29
from paddle.fluid.framework import (
    _set_expected_place,
    _current_expected_place,
    set_flags,
)
30

T
tianshuo78520a 已提交
31
import queue
32

33
import paddle
C
chenjian 已提交
34
import paddle.profiler as profiler
35
from paddle.profiler.utils import in_profiler_mode
36
from .. import core, layers
姜永久 已提交
37
from ..framework import in_dygraph_mode
38 39 40 41 42
from ..multiprocess_utils import (
    _set_SIGCHLD_handler,
    MP_STATUS_CHECK_INTERVAL,
    CleanupFuncRegistrar,
)
43
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
44
from .batch_sampler import _InfiniteIterableSampler
45
from .collate import default_collate_fn, default_convert_fn
46 47 48 49 50 51 52 53 54
from .worker import (
    ParentWatchDog,
    get_worker_info,
    _worker_loop,
    _DatasetKind,
    _IterableDatasetStopIteration,
    _WorkerException,
    _ResumeIteration,
)
55
from .flat import _flatten_batch, _restore_batch
Z
Zhang Ting 已提交
56
from paddle.profiler.timer import benchmark
57 58

__all__ = ['get_worker_info']
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

90

91
class _DataLoaderIterBase:
92 93 94 95 96 97 98 99 100 101 102 103 104 105
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
106
        self._drop_last = loader.drop_last
107
        self._auto_collate_batch = loader.auto_collate_batch
108 109
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
110
        self._prefetch_factor = loader.prefetch_factor
111
        self._use_shared_memory = loader.use_shared_memory
112 113 114
        self._timeout = (
            loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
        )
115
        self._worker_init_fn = loader.worker_init_fn
116
        self._dataset_kind = loader.dataset_kind
117
        self._pin_memory = loader.pin_memory
118

K
Kaipeng Deng 已提交
119
        self._sampler_iter = iter(self._index_sampler)
120 121 122
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
123
            self._collate_fn = loader.collate_fn or default_convert_fn
124

125 126 127 128 129 130 131 132 133
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
134 135 136 137 138 139 140 141 142 143
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

144 145 146 147 148 149
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

150 151 152 153 154 155 156 157 158 159
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

160 161 162 163 164 165 166 167

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
168
        super().__init__(loader)
169

170
        self._dataset_fetcher = _DatasetKind.create_fetcher(
171 172 173 174 175 176
            self._dataset_kind,
            self._dataset,
            self._auto_collate_batch,
            self._collate_fn,
            self._drop_last,
        )
177

178 179 180 181 182 183 184 185
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

186
        # NOTE: len(self._places) batch data compose as an output
187
        # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas
188
        # at most here
189
        self._blocking_queue_capacity = self._prefetch_factor * len(
190 191
            self._places
        )
192 193

        self._init_thread()
194 195 196 197
        self._shutdown = False

        global _loader
        _loader = self
198 199 200 201 202 203 204 205

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
206
        # if only 1 place, do not need to keep order
207
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
208 209 210 211
            core.Variable(),
            self._blocking_queue_capacity,
            len(self._places) > 1,
        )
212
        self._reader = core.create_py_reader(
213 214 215 216 217 218 219 220 221 222 223 224 225 226
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )

        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
227 228 229
        self._thread.daemon = True
        self._thread.start()

230
    def _thread_loop(self, legacy_expected_place):
231
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
232 233
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
234
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
235
        # APIs in this thread.
L
Leo Chen 已提交
236
        core.set_current_thread_name("Dataloader_" + str(id(self)))
237 238 239 240 241 242 243 244
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
245
                # read data from dataset in mini-batch
246 247 248
                batch = self._dataset_fetcher.fetch(
                    indices, self._thread_done_event
                )
249 250 251 252
            except StopIteration:
                self._exit_thread_expectedly()
                return

253 254
            if batch is None or self._thread_done_event.is_set():
                break
255 256 257 258

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
259

260 261
            if self._thread_done_event.is_set():
                break
262

263
            try:
264 265 266
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
267
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
268 269
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
270 271 272 273 274 275
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

276 277
                if self._thread_done_event.is_set():
                    break
278

279 280 281 282
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
283

284
            except Exception as e:
285
                self._exit_thread_unexpectedly()
286
                raise e
287 288

        self._exit_thread_expectedly()
289 290

    def __next__(self):
291 292 293
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
294 295
                event_type=profiler.TracerEventType.Dataloader,
            )
296
            trace_event.begin()
297
        try:
Z
Zhang Ting 已提交
298 299
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
300
            if in_dygraph_mode():
J
Jiabin Yang 已提交
301
                data = core.eager.read_next_tensor_list(
302 303
                    self._reader.read_next_list()[0]
                )
304
                data = _restore_batch(data, self._structure_infos.pop(0))
305
            else:
姜永久 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                # in static mode
                if self._return_list:
                    data = self._reader.read_next_list()
                    for i in range(len(data)):
                        data[i] = data[i]._move_to_list()
                    structs = [
                        self._structure_infos.pop(0)
                        for _ in range(len(self._places))
                    ]
                    data = [_restore_batch(d, s) for d, s in zip(data, structs)]
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
Z
Zhang Ting 已提交
323
            benchmark().after_reader()
324 325

            return data
326
        except StopIteration:
327
            self._reader.shutdown()
328
            self._try_shutdown_all()
329
            raise
C
chenjian 已提交
330
        finally:
331 332
            if in_profiler_mode():
                trace_event.end()
333

334 335 336
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
337 338 339 340 341 342 343 344 345 346 347
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

348
            self._thread = None
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

365
    def __del__(self):
366
        self._try_shutdown_all()
367

368 369 370

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
371
        super().__init__(loader)
372

K
Kaipeng Deng 已提交
373 374 375
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

376 377 378 379 380
        assert (
            self._num_workers > 0
        ), "Multi-process DataLoader " "invalid num_workers({})".format(
            self._num_workers
        )
381 382 383 384 385

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
386
        # for data order keeping, data index not equal _rcvd_idx
387
        # will be cached in _task_infos
388 389 390
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
391
        self._task_infos = {}
392
        self._structure_infos = []
393 394 395 396

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
397 398
        # has at least "_prefetch_factor" indices, and outstanding batch cached
        # output data for at least "_prefetch_factor" iterations(Note that len(_places)
399
        # batches will be composed as an iteration output)
400
        self._outstanding_capacity = self._prefetch_factor * max(
401 402
            self._num_workers, len(self._places)
        )
403

404 405 406
        # see _try_put_indices
        self._thread_lock = threading.Lock()

407 408
        self._base_seed = np.random.randint(low=0, high=sys.maxsize)

409
        # init workers and indices queues and put 2 indices in each indices queue
410 411 412 413
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

414 415 416
        self._init_thread()
        self._shutdown = False

417
    def _init_workers(self):
418 419
        import paddle.incubate.multiprocessing as multiprocessing

420 421 422 423 424 425 426 427 428
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

429
        # event for workers and thread, thread event is only need
430 431 432 433 434 435 436 437
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
438
                target=_worker_loop,
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                args=(
                    self._dataset,
                    self._dataset_kind,
                    indices_queue,
                    self._data_queue,
                    self._workers_done_event,
                    self._auto_collate_batch,
                    self._collate_fn,
                    self._drop_last,
                    self._worker_init_fn,
                    i,
                    self._num_workers,
                    self._use_shared_memory,
                    self._base_seed,
                ),
            )
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
480
        # if only 1 place, do not need to keep order
481
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
482 483
            core.Variable(), self._outstanding_capacity, len(self._places) > 1
        )
484
        self._reader = core.create_py_reader(
485 486 487 488 489 490 491 492 493 494
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )
495 496

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
497
        # thread event is only need in multi-processing mode
498 499 500
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
501 502 503
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
522
                data = core.eager.read_next_tensor_list(
523 524
                    self._reader.read_next_list()[0]
                )
K
Kaipeng Deng 已提交
525
            else:
姜永久 已提交
526
                if self._return_list:
J
Jiabin Yang 已提交
527 528 529
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
548 549 550
        if self._worker_status[worker_id] or (
            self._persistent_workers and shutdown
        ):
551 552 553
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

554
    def _try_shutdown_all(self, timeout=None):
555 556 557 558 559 560 561 562 563 564
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
565
                    self._shutdown_worker(i, shutdown=True)
566

567 568 569 570 571 572
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
573 574 575 576
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

577
    def _thread_loop(self, legacy_expected_place):
578
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
579 580
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
581
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
582
        # APIs in this thread.
L
Leo Chen 已提交
583
        core.set_current_thread_name("Dataloader_" + str(id(self)))
584 585
        _set_expected_place(legacy_expected_place)

586 587 588 589 590 591
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
592 593 594 595
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
596 597 598 599 600 601 602 603 604 605
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
606
                                if isinstance(
607 608
                                    slot, (paddle.Tensor, core.eager.Tensor)
                                ):
K
Kaipeng Deng 已提交
609 610
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
611 612 613 614 615 616 617
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
618
                    except Exception as e:
619
                        self._exit_thread_unexpectedly()
620
                        raise e
621 622 623 624 625
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
626 627 628
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
629
            # in _send_idx but will not increase _rcvd_idx, so we check
630 631
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
632 633 634
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
635
                    if len(info) == 3 or self._worker_status[info[0]]:
636 637 638 639 640
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
641 642 643 644 645 646 647 648
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
649 650 651 652 653 654 655 656 657
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
658

659 660 661 662
            if (
                self._rcvd_idx in self._task_infos
                and len(self._task_infos[self._rcvd_idx]) == 3
            ):
663 664 665
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
666

667 668 669
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
670
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
671 672 673 674 675 676 677
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
678 679 680 681 682
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
683 684 685 686 687 688 689 690
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
691 692 693 694
                    raise RuntimeError(
                        "DataLoader {} workers exit unexpectedly, "
                        "pids: {}".format(len(failed_workers), pids)
                    )
695 696 697 698 699 700 701

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
702 703 704 705
                logging.error(
                    "DataLoader reader thread failed({}) to read data from "
                    "workers' result queue.".format(e)
                )
706
                raise e
707
            else:
708
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
709 710
                    data, _IterableDatasetStopIteration
                ):
711 712 713 714 715
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
716 717 718 719 720
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
721 722 723
                    self._try_put_indices()
                    continue

724
                idx, batch, structure = data
K
Kaipeng Deng 已提交
725

726 727 728 729 730
                if (
                    isinstance(idx, _ResumeIteration)
                    and batch is None
                    and structure is None
                ):
K
Kaipeng Deng 已提交
731 732
                    return idx

733 734 735 736
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

737
                if idx == self._rcvd_idx:
738
                    del self._task_infos[idx]
739
                    self._structure_infos.append(structure)
740 741
                    return batch
                else:
742
                    self._task_infos[idx] += (batch, structure)
743 744 745
                    continue

    def _try_put_indices(self):
746 747 748
        assert (
            self._batches_outstanding <= self._outstanding_capacity
        ), "too many indices have been put to queue"
749 750 751 752 753 754 755 756 757 758 759 760 761 762
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
763

764 765 766 767 768 769
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
770

771
            self._indices_queues[worker_idx].put((self._send_idx, indices))
772
            self._task_infos[self._send_idx] = (worker_idx,)
773 774
            self._batches_outstanding += 1
            self._send_idx += 1
775 776 777 778

    def __del__(self):
        self._try_shutdown_all()

779 780 781
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

782
    def __next__(self):
783 784 785
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
786 787
                event_type=profiler.TracerEventType.Dataloader,
            )
788
            trace_event.begin()
789
        try:
Z
Zhang Ting 已提交
790 791
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
792 793 794 795 796 797 798 799
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
800 801 802 803 804
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
805 806

            if in_dygraph_mode():
J
Jiabin Yang 已提交
807
                data = core.eager.read_next_tensor_list(
808 809
                    self._reader.read_next_list()[0]
                )
810
                data = _restore_batch(data, self._structure_infos.pop(0))
811
            else:
姜永久 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825
                if self._return_list:
                    data = self._reader.read_next_list()
                    for i in range(len(data)):
                        data[i] = data[i]._move_to_list()
                    structs = [
                        self._structure_infos.pop(0)
                        for _ in range(len(self._places))
                    ]
                    data = [_restore_batch(d, s) for d, s in zip(data, structs)]
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
826
                else:
姜永久 已提交
827
                    data = self._reader.read_next()
828
            self._on_output_batch()
Z
Zhang Ting 已提交
829
            benchmark().after_reader()
830 831
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
832 833 834
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
835
            raise
C
chenjian 已提交
836
        finally:
837 838
            if in_profiler_mode():
                trace_event.end()
839 840 841 842 843

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()