dist_fleet_ctr.py 11.8 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Distribute CTR model for test fleet api
"""
T
tangwei12 已提交
17 18 19 20 21 22 23

from __future__ import print_function

import shutil
import tempfile
import time

1
123malin 已提交
24
import paddle
T
tangwei12 已提交
25 26
import paddle.fluid as fluid
import os
1
123malin 已提交
27
import numpy as np
T
tangwei12 已提交
28 29 30

import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
31
from paddle.distributed.fleet.utils.ps_util import DistributedInfer
T
tangwei12 已提交
32
import paddle.distributed.fleet as fleet
T
tangwei12 已提交
33

P
pangyoki 已提交
34 35
paddle.enable_static()

T
tangwei12 已提交
36 37 38 39 40
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


41 42 43 44 45 46 47 48 49 50 51
def fake_ctr_reader():
    def reader():
        for _ in range(1000):
            deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
            wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            yield [deep, wide, label]

    return reader


T
tangwei12 已提交
52
class TestDistCTR2x2(FleetDistRunnerBase):
53 54 55 56
    """
    For test CTR model, using Fleet api
    """

T
tangwei12 已提交
57
    def net(self, args, is_train=True, batch_size=4, lr=0.01):
58 59 60 61 62 63 64 65 66
        """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
67 68
        dnn_input_dim, lr_input_dim = int(1e5), int(1e5)

T
tangwei12 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="int64",
            lod_level=0,
            append_batch_size=False)

        datas = [dnn_data, lr_data, label]

90
        if args.reader == "pyreader":
T
tangwei12 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104
            if is_train:
                self.reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False)
            else:
                self.test_reader = fluid.io.PyReader(
                    feed_list=datas,
                    capacity=64,
                    iterable=False,
                    use_double_buffer=False)

# build dnn model
C
Chengmo 已提交
105
        dnn_layer_dims = [128, 128, 64, 32, 1]
T
tangwei12 已提交
106 107 108 109 110 111 112
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
113 114
            is_sparse=True,
            padding_idx=0)
T
tangwei12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum")
        dnn_out = dnn_pool
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
1
123malin 已提交
136 137
            is_sparse=True,
            padding_idx=0)
T
tangwei12 已提交
138 139 140 141 142 143
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)

        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
        acc = fluid.layers.accuracy(input=predict, label=label)
144

T
tangwei12 已提交
145 146
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                              label=label)
147

T
tangwei12 已提交
148 149 150 151
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)

        self.feeds = datas
152
        self.train_file_path = ["fake1", "fake2"]
T
tangwei12 已提交
153 154 155 156 157 158
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
159
        dirname = dirname + '/dnn_plugin/'
T
tangwei12 已提交
160 161 162 163 164 165 166 167 168
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

169
    def do_distributed_testing(self, fleet):
T
tangwei12 已提交
170 171 172
        """
        do distributed
        """
173
        exe = self.get_executor()
T
tangwei12 已提交
174 175 176 177 178 179 180 181 182 183 184 185

        batch_size = 4
        test_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
        self.test_reader.decorate_sample_list_generator(test_reader)

        pass_start = time.time()
        batch_idx = 0

        self.test_reader.start()
        try:
            while True:
                batch_idx += 1
186
                loss_val = exe.run(program=paddle.static.default_main_program(),
T
tangwei12 已提交
187 188 189 190 191 192 193 194 195 196 197 198
                                   fetch_list=[self.avg_cost.name])
                loss_val = np.mean(loss_val)
                message = "TEST ---> batch_idx: {} loss: {}\n".format(batch_idx,
                                                                      loss_val)
                fleet.util.print_on_rank(message, 0)
        except fluid.core.EOFException:
            self.test_reader.reset()

        pass_time = time.time() - pass_start
        message = "Distributed Test Succeed, Using Time {}\n".format(pass_time)
        fleet.util.print_on_rank(message, 0)

1
123malin 已提交
199
    def do_pyreader_training(self, fleet):
200 201 202 203 204
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """
205
        exe = self.get_executor()
206
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
207 208
        fleet.init_worker()

209 210
        batch_size = 4
        train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
1
123malin 已提交
211 212 213 214 215 216 217
        self.reader.decorate_sample_list_generator(train_reader)

        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
218
                    loss_val = exe.run(program=fluid.default_main_program(),
1
123malin 已提交
219 220
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
221
                    # TODO(randomly fail)
222
                    #   reduce_output = fleet.util.all_reduce(
223
                    #       np.array(loss_val), mode="sum")
224
                    #   loss_all_trainer = fleet.util.all_gather(float(loss_val))
225
                    #   loss_val = float(reduce_output) / len(loss_all_trainer)
226 227
                    message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
                                                                      loss_val)
228
                    fleet.util.print_on_rank(message, 0)
229

1
123malin 已提交
230 231 232 233
                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

T
tangwei12 已提交
234 235 236 237
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

1
123malin 已提交
238 239 240 241 242 243
        model_dir = tempfile.mkdtemp()
        fleet.save_inference_model(
            exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
        self.check_model_right(model_dir)
        shutil.rmtree(model_dir)

244
    def do_dataset_training_queuedataset(self, fleet):
245
        train_file_list = ctr_dataset_reader.prepare_fake_data()
1
123malin 已提交
246

247
        exe = self.get_executor()
248
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
249
        fleet.init_worker()
1
123malin 已提交
250 251 252

        thread_num = 2
        batch_size = 128
253
        filelist = train_file_list
T
tangwei12 已提交
254 255

        # config dataset
256
        dataset = paddle.distributed.QueueDataset()
T
tangwei12 已提交
257
        pipe_command = 'python ctr_dataset_reader.py'
258 259 260 261 262 263

        dataset.init(
            batch_size=batch_size,
            use_var=self.feeds,
            pipe_command=pipe_command,
            thread_num=thread_num)
T
tangwei12 已提交
264 265 266

        dataset.set_filelist(filelist)

267
        for epoch_id in range(1):
T
tangwei12 已提交
268 269 270
            pass_start = time.time()
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
271
                program=fluid.default_main_program(),
T
tangwei12 已提交
272 273 274
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
275
                print_period=2,
276
                debug=int(os.getenv("Debug", "0")))
277 278
            pass_time = time.time() - pass_start

279 280 281 282 283 284 285
        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)
286

T
tangwei12 已提交
287 288 289 290
        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def do_dataset_training(self, fleet):
        train_file_list = ctr_dataset_reader.prepare_fake_data()

        exe = self.get_executor()
        exe.run(fluid.default_startup_program())
        fleet.init_worker()

        thread_num = 2
        batch_size = 128
        filelist = train_file_list

        # config dataset
        dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
        dataset.set_use_var(self.feeds)
        dataset.set_batch_size(128)
        dataset.set_thread(2)
        dataset.set_filelist(filelist)
        dataset.set_pipe_command('python ctr_dataset_reader.py')
        dataset.load_into_memory()

        dataset.global_shuffle(fleet, 12)  ##TODO: thread configure
        shuffle_data_size = dataset.get_shuffle_data_size(fleet)
        local_data_size = dataset.get_shuffle_data_size()
        data_size_list = fleet.util.all_gather(local_data_size)
        print('after global_shuffle data_size_list: ', data_size_list)
        print('after global_shuffle data_size: ', shuffle_data_size)

        for epoch_id in range(1):
            pass_start = time.time()
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_list=[self.avg_cost],
                fetch_info=["cost"],
                print_period=2,
                debug=int(os.getenv("Debug", "0")))
            pass_time = time.time() - pass_start
        dataset.release_memory()

        if os.getenv("SAVE_MODEL") == "1":
            model_dir = tempfile.mkdtemp()
            fleet.save_inference_model(exe, model_dir,
                                       [feed.name for feed in self.feeds],
                                       self.avg_cost)
            self.check_model_right(model_dir)
            shutil.rmtree(model_dir)

        dirname = os.getenv("SAVE_DIRNAME", None)
        if dirname:
            fleet.save_persistables(exe, dirname=dirname)

T
tangwei12 已提交
342 343
if __name__ == "__main__":
    runtime_main(TestDistCTR2x2)