lookup_table_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

36 37 38
    PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[1], 1);

Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
41
  }
Y
Yu Yang 已提交
42

43
 protected:
44
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
45
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
46 47 48
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
49
  }
50 51 52 53
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
54
  LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
55 56
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
K
kexinzhao 已提交
57 58
             "An input represents embedding tensors, "
             "which is a learnable parameter.");
59
    AddInput("Ids",
K
kexinzhao 已提交
60 61 62 63 64 65 66 67 68
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "Ids must be a column vector with rank = 2. "
             "The 2nd dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update")
        .SetDefault(false);
69 70 71 72 73
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
74
        .SetDefault(-1);
75
    AddComment(R"DOC(
K
kexinzhao 已提交
76 77
Lookup Table Operator.

78 79 80
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

K
kexinzhao 已提交
81 82 83
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

84
)DOC");
85 86 87
  }
};

88 89 90 91 92 93 94 95 96
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

97 98 99 100
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

101
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
102 103
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
104
  }
Y
Yu Yang 已提交
105

106
 protected:
107
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
108
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
109 110 111
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
112
  }
113 114
};

115 116
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
117 118
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
119 120 121 122 123 124
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
125
      block->Var(out_var_name)
126
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
127 128 129
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
130
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
131 132 133 134
    }
  }
};

135 136 137 138
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
139 140 141 142 143 144 145 146 147
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);