test_warpctc_op.py 21.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yiqun Liu 已提交
17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
24 25
import paddle
import paddle.nn.functional as F
Y
Yiqun Liu 已提交
26

27
CUDA_BLOCK_SIZE = 32
28

Y
Yiqun Liu 已提交
29 30

class CTCForward(object):
31 32
    def __init__(self, softmax, softmax_lod, labels, labels_lod, num_classes,
                 batch_size, blank, norm_by_times):
Y
Yiqun Liu 已提交
33 34 35 36 37 38 39 40
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
41 42
        self.num_classes = num_classes
        self.batch_size = batch_size
Y
Yiqun Liu 已提交
43

44 45
        self.loss = np.zeros([self.batch_size, 1], dtype=softmax.dtype)
        self.gradient = np.zeros(self.softmax.shape, dtype=softmax.dtype)
Y
Yiqun Liu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
115 116
        log_acts = np.zeros(
            [total_times, self.num_classes], dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
117 118 119 120 121
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
122 123
        forward_vars = np.zeros(
            [total_times, total_segments], dtype=softmax_a_sequence.dtype)
Y
Yiqun Liu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
M
minqiyang 已提交
141
                    label_idx = j // 2
Y
Yiqun Liu 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
165 166
        softmax_offset = 0
        labels_offset = 0
Y
Yiqun Liu 已提交
167
        for i in range(self.batch_size):
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            if self.labels.shape[1] == 1:
                softmax_start_i = softmax_offset
                softmax_end_i = softmax_offset + self.softmax_lod[self.level][i]
                labels_start_i = labels_offset
                labels_end_i = labels_offset + self.labels_lod[self.level][i]

                softmax_a_sequence = self.softmax[softmax_start_i:
                                                  softmax_end_i, :]
                labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)
                softmax_offset += self.softmax_lod[self.level][i]
                labels_offset += self.labels_lod[self.level][i]
            else:
                softmax_a_sequence = self.softmax[:self.softmax_lod[i], i, :]
                labels_a_sequence = self.labels[:self.labels_lod[i], :]
                self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                       labels_a_sequence)

Y
Yiqun Liu 已提交
187 188 189 190
        return self.loss


class TestWarpCTCOp(OpTest):
191 192
    def config(self):
        self.batch_size = 4
193
        self.num_classes = 12
194 195
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
196 197 198
        self.blank = self.num_classes - 1
        self.norm_by_times = False

Y
Yiqun Liu 已提交
199 200
    def setUp(self):
        self.op_type = "warpctc"
201
        self.config()
Y
Yiqun Liu 已提交
202

203 204
        logits = np.random.uniform(
            0.1, 1.0,
205
            [sum(self.logits_lod[0]), self.num_classes]).astype("float32")
Y
Yiqun Liu 已提交
206 207
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
208
        labels = np.random.randint(
209 210 211
            0,
            self.num_classes - 1, [sum(self.labels_lod[0]), 1],
            dtype="int32")
Y
Yiqun Liu 已提交
212

213
        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
214 215
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
Y
Yiqun Liu 已提交
216 217 218
        loss = ctc.forward()

        max_sequence_length = 0
219
        for i in range(self.batch_size):
220 221
            max_sequence_length = max(max_sequence_length,
                                      self.logits_lod[0][i])
222
        self.gradient = np.zeros(
223
            [max_sequence_length, self.batch_size, self.num_classes],
224
            dtype=logits.dtype)
Y
Yiqun Liu 已提交
225 226

        self.inputs = {
227 228
            "Logits": (logits, self.logits_lod),
            "Label": (labels, self.labels_lod)
Y
Yiqun Liu 已提交
229 230
        }
        self.outputs = {"Loss": loss}
W
Wu Yi 已提交
231 232 233 234
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }
Y
Yiqun Liu 已提交
235 236

    def test_check_output(self):
237
        self.check_output()
Y
Yiqun Liu 已提交
238

W
wanghaoshuang 已提交
239
    def test_check_grad(self):
240
        self.outputs['WarpCTCGrad'] = self.gradient
H
hong 已提交
241 242
        self.check_grad(
            ["Logits"], "Loss", max_relative_error=0.007, check_dygraph=False)
Y
Yiqun Liu 已提交
243

244

245 246 247 248
class TestWarpCTCOpCase1(TestWarpCTCOp):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
249 250
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
251
        self.blank = self.num_classes - 1
252
        self.norm_by_times = False
W
Wu Yi 已提交
253 254


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
class TestWarpCTCOpWithPadding(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [sum(self.labels_length), 1],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
281 282
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
283 284 285 286 287 288 289 290 291
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
292
            dtype=logits.dtype)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
317
            dtype=logits.dtype)
318 319 320

        self.inputs = {
            "Logits": new_logits,
W
whs 已提交
321
            "Label": new_labels,
322 323 324 325 326 327 328 329 330 331
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
332
        self.check_output()
333 334 335

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
H
hong 已提交
336 337
        self.check_grad(
            ["Logits"], "Loss", max_relative_error=0.007, check_dygraph=False)
338 339 340 341 342 343 344 345 346 347


class TestWarpCTCOpWithPaddingCase1(TestWarpCTCOpWithPadding):
    def config(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_lod = [[4, 1, 3, 3]]
        self.labels_lod = [[3, 1, 4, 4]]
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
348
        self.blank = self.num_classes - 1
349
        self.norm_by_times = False
350

Y
Yiqun Liu 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
class TestWarpCTCOpFp64(OpTest):
    def config(self):
        self.batch_size = 4
        self.num_classes = 8
        self.logits_lod = [[4, 1, 5, 5]]
        self.labels_lod = [[3, 1, 4, 2]]
        self.logits_length = np.array([4, 1, 5, 5], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 2], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

    def setUp(self):
        self.op_type = "warpctc"
        self.config()

        logits = np.random.uniform(
            0.1, 1.0,
            [sum(self.logits_length), self.num_classes]).astype("float64")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [sum(self.labels_length), 1],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_lod, labels, self.labels_lod,
                         self.num_classes, self.batch_size, self.blank,
                         self.norm_by_times)
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(self.batch_size):
            max_sequence_length = max(max_sequence_length,
                                      self.logits_length[i])
        # reshape logits to T*N*S
        new_logits = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.logits_length[batch_id]):
                for j in range(self.num_classes):
                    new_logits[i, batch_id, j] = logits[cur + i, j]
            cur = cur + self.logits_length[batch_id]

        # reshape labels to N*S
        max_target_seq_length = 0
        for i in range(self.batch_size):
            max_target_seq_length = max(max_target_seq_length,
                                        self.labels_length[i])
        new_labels = np.zeros(
            [self.batch_size, max_target_seq_length], dtype="int32")

        cur = 0
        for batch_id in range(self.batch_size):
            for i in range(self.labels_length[batch_id]):
                new_labels[batch_id, i] = labels[cur + i]
            cur = cur + self.labels_length[batch_id]

        self.gradient = np.zeros(
            [max_sequence_length, self.batch_size, self.num_classes],
            dtype=logits.dtype)

        self.inputs = {
            "Logits": new_logits,
            "Label": new_labels,
            "LogitsLength": self.logits_length,
            "LabelLength": self.labels_length
        }
        self.outputs = {"Loss": loss}
        self.attrs = {
            "blank": self.blank,
            "norm_by_times": self.norm_by_times,
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.outputs['WarpCTCGrad'] = self.gradient
        self.check_grad(["Logits"], "Loss")


436 437 438 439 440 441 442 443 444 445 446 447
class TestWarpCTCOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            logits = fluid.data(
                name='logits', shape=[5, 16, 6], dtype='float32')
            logits_length = fluid.data(
                name='logits_length', shape=[None], dtype='int64')
            label = fluid.data(name='label', shape=[16, 3], dtype='int32')
            label_length = fluid.data(
                name='labels_length', shape=[None], dtype='int64')

            def test_logits_Variable():
448
                logits_data = np.random.rand(5, 16, 6).astype(logits.dtype)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                fluid.layers.warpctc(
                    input=logits_data,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_Variable)

            def test_label_Variable():
                label_data = np.random.randint(0, 5, [5, 1]).astype("int32")
                fluid.layers.warpctc(
                    input=logits,
                    label=label_data,
                    input_length=logits_length,
                    label_length=label_length)

            self.assertRaises(TypeError, test_label_Variable)

            def test_logits_len_Variable():
                logits_length_data = np.array([5] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length_data,
                    label_length=label_length)

            self.assertRaises(TypeError, test_logits_len_Variable)

            def test_label_len_Variable():
                label_length_data = np.array([3] * 16).astype("int64")
                fluid.layers.warpctc(
                    input=logits,
                    label=label,
                    input_length=logits_length,
                    label_length=label_length_data)

            self.assertRaises(TypeError, test_label_len_Variable)

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def test_dygraph_errors(self):
        def test_dygraph_with_lod():

            logits = np.random.uniform(0.1, 1.0, [20, 15]).astype("float32")
            # labels should not be blank
            labels = np.random.randint(0, 15 - 1, [15, 1], dtype="int32")
            softmax = paddle.to_variable(logits)
            labels = paddle.to_variable(labels)

            fluid.layers.warpctc(input=softmax, label=labels)

        paddle.disable_static()
        self.assertRaises(ValueError, test_dygraph_with_lod)
        paddle.enable_static()

502

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
class TestCTCLossAPICase(unittest.TestCase):
    def test_functinal_api(self):
        self.batch_size = 4
        self.num_classes = CUDA_BLOCK_SIZE + 2
        self.logits_length = np.array([4, 1, 3, 3], dtype=np.int64)
        self.labels_length = np.array([3, 1, 4, 4], dtype=np.int64)
        self.blank = self.num_classes - 1
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            0,
            self.num_classes - 1, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
528 529 530 531
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        loss_pd_mean = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='mean')
        loss_pd_mean = loss_pd_mean.numpy()

        loss_pd_sum = F.ctc_loss(
            softmax,
            labels,
            logits_length,
            labels_length,
            blank=self.blank,
            reduction='sum')
        loss_pd_sum = loss_pd_sum.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)
        loss_np_mean = (loss_np / labels_length.numpy()).mean()
        loss_np_sum = loss_np.sum()

        self.assertTrue(np.allclose(loss_pd_mean, loss_np_mean, atol=1))
        self.assertTrue(np.allclose(loss_pd_sum, loss_np_sum, atol=1))

    def test_class_api(self):
        self.batch_size = 3
        self.num_classes = 15
        self.logits_length = np.array([3, 3, 3], dtype=np.int64)
        self.labels_length = np.array([0, 1, 2], dtype=np.int64)
        self.blank = 0
        self.norm_by_times = False

        logits = np.random.uniform(0.1, 1.0, [
            max(self.logits_length), self.batch_size, self.num_classes
        ]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, -1, logits)
        # labels should not be blank
        labels = np.random.randint(
            1,
            self.num_classes, [self.batch_size, max(self.labels_length)],
            dtype="int32")

        ctc = CTCForward(softmax, self.logits_length, labels,
                         self.labels_length, self.num_classes, self.batch_size,
                         self.blank, self.norm_by_times)
        loss_np = ctc.forward()

        paddle.disable_static()
581 582 583 584
        softmax = paddle.to_tensor(logits)
        labels = paddle.to_tensor(labels)
        logits_length = paddle.to_tensor(self.logits_length)
        labels_length = paddle.to_tensor(self.labels_length)
585 586 587 588 589 590 591 592 593 594

        loss_pd = paddle.nn.CTCLoss(self.blank, 'none')(
            softmax, labels, logits_length, labels_length)
        loss_pd = loss_pd.numpy()
        paddle.enable_static()
        loss_np = np.squeeze(loss_np, axis=-1)

        self.assertTrue(np.allclose(loss_pd, loss_np, atol=1))


Y
Yiqun Liu 已提交
595 596
if __name__ == "__main__":
    unittest.main()