pooling.py 54.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.layer_helper import LayerHelper
from .. import functional as F
Z
zhiboniu 已提交
17
from .. import Layer
18

19 20
__all__ = []

21

Z
zhiboniu 已提交
22
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
23
    r"""
24
    This operation applies a 1D average pooling over an input signal composed
25
    of several input planes, based on the input, output_size, return_mask parameters.
26 27 28 29 30
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
31
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
32 33 34 35
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
36
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
37

W
Wei Shengyu 已提交
38 39
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
40
            it must contain an integer.
W
Wei Shengyu 已提交
41 42 43
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
44 45 46 47 48 49
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
50 51 52 53 54
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
55

56
    Shape:
W
Wei Shengyu 已提交
57 58 59 60
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
61

62 63
    Returns:
        A callable object of AvgPool1D.
L
Ligoml 已提交
64

65 66 67
    Examples:

        .. code-block:: python
68

W
Wei Shengyu 已提交
69 70
            import paddle
            import paddle.nn as nn
71

72
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
73 74 75
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
76 77 78

    """

L
Ligoml 已提交
79 80 81 82 83 84 85 86 87
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        exclusive=True,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
88
        super(AvgPool1D, self).__init__()
89 90 91 92
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
93
        self.exclusive = exclusive
94 95 96
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
97 98 99 100 101 102 103 104 105
        out = F.avg_pool1d(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.exclusive,
            self.ceil_mode,
            self.name,
        )
106 107
        return out

108 109
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
110 111
            **self.__dict__
        )
112

113

Z
zhiboniu 已提交
114
class AvgPool2D(Layer):
115
    r"""
116 117 118 119
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
120

121
    Example:
W
Wei Shengyu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
137 138
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
139
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
140 141
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
142 143
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
144 145 146 147 148 149
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
150 151 152 153 154 155 156 157 158 159
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
160

161
    Shape:
W
Wei Shengyu 已提交
162 163 164 165
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
166

W
Wei Shengyu 已提交
167 168
    Returns:
        A callable object of AvgPool2D.
169

170 171
    Examples:
        .. code-block:: python
172

W
Wei Shengyu 已提交
173 174
            import paddle
            import paddle.nn as nn
175

W
Wei Shengyu 已提交
176
            # max pool2d
177
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
178
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
179
                                stride=2, padding=0)
W
Wei Shengyu 已提交
180 181
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
182 183 184

    """

L
Ligoml 已提交
185 186 187 188 189 190 191 192 193 194 195
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
196
        super(AvgPool2D, self).__init__()
197
        self.ksize = kernel_size
198 199 200
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
201
        self.exclusive = exclusive
202 203
        self.divisor = divisor_override
        self.data_format = data_format
204 205
        self.name = name

206
    def forward(self, x):
L
Ligoml 已提交
207 208 209 210 211 212 213 214 215 216 217
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
218

219 220
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
221 222
            **self.__dict__
        )
223

224

Z
zhiboniu 已提交
225
class AvgPool3D(Layer):
226
    """
227

228 229 230 231
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
232

W
Wei Shengyu 已提交
233 234
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
235 236 237
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
238
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
239 240
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
241 242
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
243 244 245 246 247 248
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
249 250 251 252 253 254 255
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
256
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
257 258
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
259

W
Wei Shengyu 已提交
260 261
    Returns:
        A callable object of AvgPool3D.
262 263

    Shape:
W
Wei Shengyu 已提交
264 265 266 267
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
268

269 270
    Examples:
        .. code-block:: python
271

W
Wei Shengyu 已提交
272 273
            import paddle
            import paddle.nn as nn
274

W
Wei Shengyu 已提交
275
            # avg pool3d
276
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
277
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
278
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
279 280
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
281

282 283
    """

L
Ligoml 已提交
284 285 286 287 288 289 290 291 292 293 294
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
295
        super(AvgPool3D, self).__init__()
296 297 298 299
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
300
        self.exclusive = exclusive
301 302
        self.divisor = divisor_override
        self.data_format = data_format
303 304
        self.name = name

305
    def forward(self, x):
L
Ligoml 已提交
306 307 308 309 310 311 312 313 314 315 316
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
317

318 319
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
320 321
            **self.__dict__
        )
322

323

Z
zhiboniu 已提交
324
class MaxPool1D(Layer):
325
    """
W
Wei Shengyu 已提交
326 327 328 329 330
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
331

332 333 334
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
335 336 337

    ..  math::

W
Wei Shengyu 已提交
338
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
339

W
Wei Shengyu 已提交
340 341
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
342
            it must contain an integer.
W
Wei Shengyu 已提交
343 344 345
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
346 347 348
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
349 350
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
351
            The default value is 0.
W
Wei Shengyu 已提交
352 353 354 355 356
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
357
    Returns:
W
Wei Shengyu 已提交
358
        A callable object of MaxPool1D.
359

360
    Shape:
W
Wei Shengyu 已提交
361 362 363 364
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
365 366

    Examples:
367

368 369
        .. code-block:: python

W
Wei Shengyu 已提交
370 371
            import paddle
            import paddle.nn as nn
372

373
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
374 375 376
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
377

W
Wei Shengyu 已提交
378 379 380
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
381 382 383

    """

L
Ligoml 已提交
384 385 386 387 388 389 390 391 392
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
393
        super(MaxPool1D, self).__init__()
394 395 396 397
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
398
        self.return_mask = return_mask
399 400 401
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
402 403 404 405 406 407 408 409 410
        out = F.max_pool1d(
            input,
            self.kernel_size,
            self.stride,
            self.padding,
            self.return_mask,
            self.ceil_mode,
            self.name,
        )
411
        return out
412

413 414
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
415 416
            **self.__dict__
        )
417

418

Z
zhiboniu 已提交
419
class MaxPool2D(Layer):
420
    r"""
421
    This operation applies 2D max pooling over input feature based on the input,
422 423 424 425 426
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
442 443
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
444
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
445
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
446
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
447 448
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
449 450 451
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
452
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
453 454
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
455 456 457 458 459 460 461
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
462

W
Wei Shengyu 已提交
463 464
    Returns:
        A callable object of MaxPool2D.
465 466

    Shape:
W
Wei Shengyu 已提交
467 468 469 470
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
471

472 473
    Examples:
        .. code-block:: python
474

W
Wei Shengyu 已提交
475 476
            import paddle
            import paddle.nn as nn
477

W
Wei Shengyu 已提交
478
            # max pool2d
479
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
480
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
481
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
482 483
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
484

W
Wei Shengyu 已提交
485 486 487 488
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
489 490
    """

L
Ligoml 已提交
491 492 493 494 495 496 497 498 499 500
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
501
        super(MaxPool2D, self).__init__()
502 503 504
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
505
        self.return_mask = return_mask
506 507 508 509 510
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
511 512 513 514 515 516 517 518 519 520
        return F.max_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
521

522 523
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
524 525
            **self.__dict__
        )
526

527

Z
zhiboniu 已提交
528
class MaxPool3D(Layer):
529
    """
530
    This operation applies 3D max pooling over input features based on the input,
531
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
532 533
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
534

W
Wei Shengyu 已提交
535 536
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
537
            is a tuple or list, it must contain three integers,
538
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
539
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
540
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
541 542
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
543 544
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
545 546 547
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
548
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
549 550
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
551 552 553 554 555 556 557
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
558 559


W
Wei Shengyu 已提交
560 561
    Returns:
        A callable object of MaxPool3D.
562 563

    Shape:
W
Wei Shengyu 已提交
564 565 566 567
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
568

569 570
    Examples:
        .. code-block:: python
571

W
Wei Shengyu 已提交
572 573
            import paddle
            import paddle.nn as nn
574

W
Wei Shengyu 已提交
575
            # max pool3d
576
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
577
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
578
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
579 580
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
581

W
Wei Shengyu 已提交
582 583 584 585
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
586 587
    """

L
Ligoml 已提交
588 589 590 591 592 593 594 595 596 597
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
598
        super(MaxPool3D, self).__init__()
599 600 601
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
602
        self.return_mask = return_mask
603 604 605 606 607
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
608 609 610 611 612 613 614 615 616 617
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
618

619 620
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
621 622
            **self.__dict__
        )
623

624

Z
zhiboniu 已提交
625
class AdaptiveAvgPool1D(Layer):
626
    r"""
627

628 629 630 631 632
    A 1D adaptive average pooling over an input signal composed
    of several input planes, based on :attr:`output_size`.
    Input and output are in NCL format, where N is batch
    size, C is the number of channels and L is the length of the feature.
    The shape of output will be :math:`[N, C, output\_size]`.
633

634
    The formulation for average adaptive pool1d is
635 636 637

    ..  math::

638
        lstart &= \lfloor i * L_{in} / L_{out}\rfloor,
639

640
        lend &= \lceil(i + 1) * L_{in} / L_{out}\rceil,
641

642
        Output(i) &= \frac{\sum Input[lstart:lend]}{lend - lstart}.
643

W
Wei Shengyu 已提交
644
    Parameters:
645 646
        output_size(int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
647

648
    Returns:
649
        A callable object for computing 1D adaptive average pooling.
650

651 652
    Examples:
        .. code-block:: python
653

W
Wei Shengyu 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn

669
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
670 671 672
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
673 674
    """

675
    def __init__(self, output_size, name=None):
C
cnn 已提交
676
        super(AdaptiveAvgPool1D, self).__init__()
677
        self.output_size = output_size
678 679
        self.name = name

680 681 682
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

683 684 685
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

686

Z
zhiboniu 已提交
687
class AdaptiveAvgPool2D(Layer):
688
    r"""
689 690 691 692 693 694 695 696

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
697
        hstart &= floor(i * H_{in} / H_{out})
698

W
Wei Shengyu 已提交
699
        hend &= ceil((i + 1) * H_{in} / H_{out})
700

W
Wei Shengyu 已提交
701
        wstart &= floor(j * W_{in} / W_{out})
702

W
Wei Shengyu 已提交
703
        wend &= ceil((j + 1) * W_{in} / W_{out})
704

W
Wei Shengyu 已提交
705
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
706 707 708


    Parameters:
W
Wei Shengyu 已提交
709
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
710 711
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
712
        data_format(str, optional): The data format of the input and output data. An optional string
713 714
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
715 716
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
717 718

    Shape:
W
Wei Shengyu 已提交
719 720 721 722
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
723 724

    Returns:
C
cnn 已提交
725
        A callable object of AdaptiveAvgPool2D.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
746

747 748
            x = paddle.rand([2, 3, 32, 32])

C
cnn 已提交
749
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
750 751 752 753 754
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
755
        super(AdaptiveAvgPool2D, self).__init__()
756 757 758 759 760
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
761 762 763 764 765 766
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
767

768 769 770
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

771

Z
zhiboniu 已提交
772
class AdaptiveAvgPool3D(Layer):
773
    r"""
774 775 776 777 778 779 780 781

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
782
        dstart &= floor(i * D_{in} / D_{out})
783

W
Wei Shengyu 已提交
784
        dend &= ceil((i + 1) * D_{in} / D_{out})
785

W
Wei Shengyu 已提交
786
        hstart &= floor(j * H_{in} / H_{out})
787

W
Wei Shengyu 已提交
788
        hend &= ceil((j + 1) * H_{in} / H_{out})
789

W
Wei Shengyu 已提交
790
        wstart &= floor(k * W_{in} / W_{out})
791

W
Wei Shengyu 已提交
792
        wend &= ceil((k + 1) * W_{in} / W_{out})
793

W
Wei Shengyu 已提交
794 795
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
796 797 798


    Parameters:
W
Wei Shengyu 已提交
799
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
800 801
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
802
        data_format(str, optional): The data format of the input and output data. An optional string
803 804
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
805 806
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
807
    Shape:
W
Wei Shengyu 已提交
808 809 810 811
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
812 813

    Returns:
C
cnn 已提交
814
        A callable object of AdaptiveAvgPool3D.
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
838

839 840
            x = paddle.rand([2, 3, 8, 32, 32])

C
cnn 已提交
841
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
842 843 844 845 846
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
847
        super(AdaptiveAvgPool3D, self).__init__()
848 849 850 851 852
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
853 854 855 856 857 858
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
859

860 861 862
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

863

Z
zhiboniu 已提交
864
class AdaptiveMaxPool1D(Layer):
865 866 867
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
868
    of several input planes, based on the input, output_size, return_mask parameters.
869 870 871 872 873 874 875 876
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
877
        lstart &= floor(i * L_{in} / L_{out})
878

W
Wei Shengyu 已提交
879
        lend &= ceil((i + 1) * L_{in} / L_{out})
880

W
Wei Shengyu 已提交
881
        Output(i) &= max(Input[lstart:lend])
882

W
Wei Shengyu 已提交
883 884 885 886
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
887
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
888 889
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
890
    Returns:
W
Wei Shengyu 已提交
891
        A callable object of AdaptiveMaxPool1D.
892 893

    Shape:
W
Wei Shengyu 已提交
894 895 896 897
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
898 899 900 901

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn

917
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
918 919 920 921 922 923 924 925
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
926 927 928

    """

929
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
930
        super(AdaptiveMaxPool1D, self).__init__()
931
        self.output_size = output_size
932
        self.return_mask = return_mask
933 934 935
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
936 937 938
        return F.adaptive_max_pool1d(
            input, self.output_size, self.return_mask, self.name
        )
939

940
    def extra_repr(self):
L
Ligoml 已提交
941 942 943
        return 'output_size={}, return_mask={}'.format(
            self.output_size, self.return_mask
        )
944

945

Z
zhiboniu 已提交
946
class AdaptiveMaxPool2D(Layer):
947 948
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
949 950
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
951

952
    For adaptive max pool2d:
953

954
    ..  math::
955

W
Wei Shengyu 已提交
956
        hstart &= floor(i * H_{in} / H_{out})
957

W
Wei Shengyu 已提交
958
        hend &= ceil((i + 1) * H_{in} / H_{out})
959

W
Wei Shengyu 已提交
960
        wstart &= floor(j * W_{in} / W_{out})
961

W
Wei Shengyu 已提交
962
        wend &= ceil((j + 1) * W_{in} / W_{out})
963

W
Wei Shengyu 已提交
964
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
965

966
    Parameters:
W
Wei Shengyu 已提交
967 968 969 970 971 972 973
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
974
    Shape:
W
Wei Shengyu 已提交
975 976 977 978
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
979

980
    Returns:
C
cnn 已提交
981
        A callable object of AdaptiveMaxPool2D.
982 983
    Examples:
        .. code-block:: python
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
1001

1002 1003
            x = paddle.rand([2, 3, 32, 32])

1004
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1005 1006 1007
            pool_out, indices = adaptive_max_pool(x = x)
    """

1008
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1009
        super(AdaptiveMaxPool2D, self).__init__()
1010
        self._output_size = output_size
1011
        self._return_mask = return_mask
1012 1013 1014
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1015 1016 1017 1018 1019 1020
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1021

1022
    def extra_repr(self):
L
Ligoml 已提交
1023 1024 1025
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1026

1027

Z
zhiboniu 已提交
1028
class AdaptiveMaxPool3D(Layer):
1029
    """
W
Wei Shengyu 已提交
1030 1031 1032
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1033

1034
    For adaptive max pool3d:
1035

1036
    ..  math::
1037

W
Wei Shengyu 已提交
1038
        dstart &= floor(i * D_{in} / D_{out})
1039

W
Wei Shengyu 已提交
1040
        dend &= ceil((i + 1) * D_{in} / D_{out})
1041

W
Wei Shengyu 已提交
1042
        hstart &= floor(j * H_{in} / H_{out})
1043

W
Wei Shengyu 已提交
1044
        hend &= ceil((j + 1) * H_{in} / H_{out})
1045

W
Wei Shengyu 已提交
1046
        wstart &= floor(k * W_{in} / W_{out})
1047

W
Wei Shengyu 已提交
1048
        wend &= ceil((k + 1) * W_{in} / W_{out})
1049

W
Wei Shengyu 已提交
1050
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1051

1052
    Parameters:
W
Wei Shengyu 已提交
1053 1054 1055 1056 1057 1058 1059
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1060
    Shape:
W
Wei Shengyu 已提交
1061 1062 1063 1064 1065
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1066
    Returns:
C
cnn 已提交
1067
        A callable object of AdaptiveMaxPool3D.
1068 1069
    Examples:
        .. code-block:: python
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1090

1091
            x = paddle.rand([2, 3, 8, 32, 32])
C
cnn 已提交
1092
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1093 1094
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1095
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1096
            out, indices = pool(x)
1097
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1098

1099 1100
    """

1101
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1102
        super(AdaptiveMaxPool3D, self).__init__()
1103
        self._output_size = output_size
1104
        self._return_mask = return_mask
1105 1106 1107
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1108 1109 1110 1111 1112 1113
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1114 1115

    def extra_repr(self):
L
Ligoml 已提交
1116 1117 1118
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1119 1120


1121
class MaxUnPool1D(Layer):
1122
    r"""
1123 1124
    This API implements max unpooling 1d opereation.

L
Ligoml 已提交
1125 1126
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1127 1128 1129 1130
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
L
Ligoml 已提交
1131

1132 1133 1134 1135
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
L
Ligoml 已提交
1136

1137 1138 1139 1140 1141 1142
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1143
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

L
Ligoml 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCL",
        output_size=None,
        name=None,
    ):
1181 1182 1183 1184 1185 1186 1187 1188 1189
        super(MaxUnPool1D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        return F.max_unpool1d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1200 1201 1202 1203 1204

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1205
class MaxUnPool2D(Layer):
1206
    r"""
1207 1208
    This API implements max unpooling 2d opereation.

1209 1210 1211
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
L
Ligoml 已提交
1212

1213 1214 1215 1216 1217 1218 1219 1220

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1221
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

L
Ligoml 已提交
1243

1244 1245 1246

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1247

1248 1249 1250
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1251
        data = paddle.rand(shape=[1,1,6,6])
1252 1253 1254
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1255
        unpool_out = Unpool2D(pool_out, indices)
1256 1257 1258 1259
        # unpool_out shape: [1, 1, 6, 6]

    """

L
Ligoml 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCHW",
        output_size=None,
        name=None,
    ):
1269 1270 1271 1272 1273 1274 1275 1276 1277
        super(MaxUnPool2D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        return F.max_unpool2d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1288 1289 1290

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1291 1292 1293


class MaxUnPool3D(Layer):
1294
    r"""
1295 1296
    This API implements max unpooling 3d opereation.

L
Ligoml 已提交
1297 1298
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1299 1300 1301 1302
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
L
Ligoml 已提交
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

L
Ligoml 已提交
1315

1316 1317 1318 1319 1320 1321
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1322
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

L
Ligoml 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCDHW",
        output_size=None,
        name=None,
    ):
1360 1361 1362 1363 1364 1365 1366 1367 1368
        super(MaxUnPool3D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        return F.max_unpool3d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1379 1380 1381

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)