pooling.py 54.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.layer_helper import LayerHelper
from .. import functional as F
Z
zhiboniu 已提交
17
from .. import Layer
18

19 20
__all__ = []

21

Z
zhiboniu 已提交
22
class AvgPool1D(Layer):
W
Wei Shengyu 已提交
23
    r"""
24
    This operation applies a 1D average pooling over an input signal composed
25
    of several input planes, based on the input, output_size, return_mask parameters.
26 27 28 29 30
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
W
Wei Shengyu 已提交
31
    output (N, C, :math:`L_{out}`) and kernel_size ksize can be precisely described as
32 33 34 35
    For average pool1d:

    ..  math::

W
Wei Shengyu 已提交
36
        Output(N_i, C_i, l) = \frac{Input[N_i, C_i, stride \times l:stride \times l+k]}{ksize}
37

W
Wei Shengyu 已提交
38 39
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
40
            it must contain an integer.
W
Wei Shengyu 已提交
41 42 43
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
44 45 46 47 48 49
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
50 51 52 53 54
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is `True`.
        ceil_mode(bool, optional): ${ceil_mode_comment}Whether to use the ceil function to calculate output height
            and width. If it is set to False, the floor function will be used. The default value is False.
        name(str, optional): For eed to detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no nset and None by default.
55

56
    Shape:
W
Wei Shengyu 已提交
57 58 59 60
        - x(Tensor): The input tensor of avg pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
61

62 63
    Returns:
        A callable object of AvgPool1D.
L
Ligoml 已提交
64

65 66 67
    Examples:

        .. code-block:: python
68

W
Wei Shengyu 已提交
69 70
            import paddle
            import paddle.nn as nn
71

72
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
73 74 75
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
76 77 78

    """

L
Ligoml 已提交
79 80 81 82 83 84 85 86 87
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        exclusive=True,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
88
        super(AvgPool1D, self).__init__()
89 90 91 92
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
93
        self.exclusive = exclusive
94 95 96
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
97 98 99 100 101 102 103 104 105
        out = F.avg_pool1d(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.exclusive,
            self.ceil_mode,
            self.name,
        )
106 107
        return out

108 109
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
110 111
            **self.__dict__
        )
112

113

Z
zhiboniu 已提交
114
class AvgPool2D(Layer):
115
    r"""
116 117 118 119
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
120

121
    Example:
W
Wei Shengyu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        Input:
            X shape: :math:`(N, C, :math:`H_{in}`, :math:`W_{in}`)`
        Attr:
            kernel_size: ksize

        Output:
            Out shape: :math:`(N, C, :math:`H_{out}`, :math:`W_{out}`)`

        ..  math::

            Output(N_i, C_j, h, w)  = \frac{\sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)}{ksize[0] * ksize[1]}

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
137 138
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
139
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
140 141
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
142 143
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
144 145 146 147 148 149
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
150 151 152 153 154 155 156 157 158 159
        ceil_mode(bool, optional): When True, will use `ceil` instead of `floor` to compute the output shape.
        exclusive(bool, optional): Whether to exclude padding points in average pooling
            mode, default is `true`.
        divisor_override(float, optional): If specified, it will be used as divisor, otherwise kernel_size will be
            used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`,
            `"NDHW"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
160

161
    Shape:
W
Wei Shengyu 已提交
162 163 164 165
        - x(Tensor): The input tensor of avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
166

W
Wei Shengyu 已提交
167 168
    Returns:
        A callable object of AvgPool2D.
169

170 171
    Examples:
        .. code-block:: python
172

W
Wei Shengyu 已提交
173 174
            import paddle
            import paddle.nn as nn
175

W
Wei Shengyu 已提交
176
            # max pool2d
177
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
178
            AvgPool2D = nn.AvgPool2D(kernel_size=2,
179
                                stride=2, padding=0)
W
Wei Shengyu 已提交
180 181
            output = AvgPool2D(input)
            # output.shape [1, 3, 16, 16]
182 183 184

    """

L
Ligoml 已提交
185 186 187 188 189 190 191 192 193 194 195
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
196
        super(AvgPool2D, self).__init__()
197
        self.ksize = kernel_size
198 199 200
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
201
        self.exclusive = exclusive
202 203
        self.divisor = divisor_override
        self.data_format = data_format
204 205
        self.name = name

206
    def forward(self, x):
L
Ligoml 已提交
207 208 209 210 211 212 213 214 215 216 217
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
218

219 220
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
221 222
            **self.__dict__
        )
223

224

Z
zhiboniu 已提交
225
class AvgPool3D(Layer):
226
    """
227 228 229 230
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
231

W
Wei Shengyu 已提交
232 233
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size
234 235 236
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
237
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
238 239
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
240 241
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
242 243 244 245 246 247
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
248 249 250 251 252 253 254
        ceil_mode(bool, optional): ${ceil_mode_comment}
        exclusive(bool, optional): Whether to exclude padding points in average pooling mode, default is True.
        divisor_override(int|float, optional): if specified, it will be used as divisor, otherwise kernel_size will
            be used. Default None.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
             `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_depth, input_height, input_width]`.
255
        name(str, optional): For detailed information, please refer
W
Wei Shengyu 已提交
256 257
             to :ref:`api_guide_Name`. Usually name is no need to set and
             None by default.
258

W
Wei Shengyu 已提交
259 260
    Returns:
        A callable object of AvgPool3D.
261 262

    Shape:
W
Wei Shengyu 已提交
263 264 265 266
        - x(Tensor): The input tensor of avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of avg pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
267 268
    Examples:
        .. code-block:: python
269

W
Wei Shengyu 已提交
270 271
            import paddle
            import paddle.nn as nn
272

W
Wei Shengyu 已提交
273
            # avg pool3d
274
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
275
            AvgPool3D = nn.AvgPool3D(kernel_size=2,
276
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
277 278
            output = AvgPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
279

280 281
    """

L
Ligoml 已提交
282 283 284 285 286 287 288 289 290 291 292
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        ceil_mode=False,
        exclusive=True,
        divisor_override=None,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
293
        super(AvgPool3D, self).__init__()
294 295 296 297
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
298
        self.exclusive = exclusive
299 300
        self.divisor = divisor_override
        self.data_format = data_format
301 302
        self.name = name

303
    def forward(self, x):
L
Ligoml 已提交
304 305 306 307 308 309 310 311 312 313 314
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            exclusive=self.exclusive,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name,
        )
315

316 317
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
318 319
            **self.__dict__
        )
320

321

Z
zhiboniu 已提交
322
class MaxPool1D(Layer):
323
    """
W
Wei Shengyu 已提交
324 325 326 327 328
    This operation applies 1D max pooling over input signal
    composed of several input planes based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCL format, where N is batch size, C is the number of channels,
    L is the length of the feature.
329

330 331 332
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
333 334 335

    ..  math::

W
Wei Shengyu 已提交
336
        Output(N_i, C_i, l) =  max(Input[N_i, C_i, stride \times l:stride \times l+k])
337

W
Wei Shengyu 已提交
338 339
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
340
            it must contain an integer.
W
Wei Shengyu 已提交
341 342 343
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer. Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
344 345 346
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
W
Wei Shengyu 已提交
347 348
            4. A list[int] or tuple(int) whose length is 2, It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or(0,0).
349
            The default value is 0.
W
Wei Shengyu 已提交
350 351 352 353 354
        return_mask(bool, optional): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode(bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
355
    Returns:
W
Wei Shengyu 已提交
356
        A callable object of MaxPool1D.
357

358
    Shape:
W
Wei Shengyu 已提交
359 360 361 362
        - x(Tensor): The input tensor of max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool1d  operator, which is a 3-D tensor.
          The data type is same as input x.
363 364

    Examples:
365

366 367
        .. code-block:: python

W
Wei Shengyu 已提交
368 369
            import paddle
            import paddle.nn as nn
370

371
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
372 373 374
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = MaxPool1D(data)
            # pool_out shape: [1, 3, 16]
375

W
Wei Shengyu 已提交
376 377 378
            MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
            pool_out, indices = MaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
379 380 381

    """

L
Ligoml 已提交
382 383 384 385 386 387 388 389 390
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        name=None,
    ):
C
cnn 已提交
391
        super(MaxPool1D, self).__init__()
392 393 394 395
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
396
        self.return_mask = return_mask
397 398 399
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
400 401 402 403 404 405 406 407 408
        out = F.max_pool1d(
            input,
            self.kernel_size,
            self.stride,
            self.padding,
            self.return_mask,
            self.ceil_mode,
            self.name,
        )
409
        return out
410

411 412
    def extra_repr(self):
        return 'kernel_size={kernel_size}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
413 414
            **self.__dict__
        )
415

416

Z
zhiboniu 已提交
417
class MaxPool2D(Layer):
418
    r"""
419
    This operation applies 2D max pooling over input feature based on the input,
420 421 422 423 424
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
W
Wei Shengyu 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        - Input:
            X shape: :math:`(N, C, H_{in}, W_{in})`
        - Attr:
            kernel_size: ksize

        - Output:
            Out shape: :math:`(N, C, H_{out}, W_{out})`

        ..  math::

            Output(N_i, C_j, h, w) = \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1}
                Input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
440 441
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
W
Wei Shengyu 已提交
442
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
443
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
444
            Otherwise, the pool stride size will be a square of an int.
W
Wei Shengyu 已提交
445 446
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
447 448 449
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
450
            4. A list[int] or tuple(int) whose length is \4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
451 452
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
453 454 455 456 457 458 459
        ceil_mode(bool, optional): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
460

W
Wei Shengyu 已提交
461 462
    Returns:
        A callable object of MaxPool2D.
463 464

    Shape:
W
Wei Shengyu 已提交
465 466 467 468
        - x(Tensor): The input tensor of max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool2d  operator, which is a 4-D tensor.
          The data type is same as input x.
469

470 471
    Examples:
        .. code-block:: python
472

W
Wei Shengyu 已提交
473 474
            import paddle
            import paddle.nn as nn
475

W
Wei Shengyu 已提交
476
            # max pool2d
477
            input = paddle.uniform([1, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
478
            MaxPool2D = nn.MaxPool2D(kernel_size=2,
479
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
480 481
            output = MaxPool2D(input)
            # output.shape [1, 3, 16, 16]
482

W
Wei Shengyu 已提交
483 484 485 486
            # for return_mask=True
            MaxPool2D = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool2D(input)
            # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
487 488
    """

L
Ligoml 已提交
489 490 491 492 493 494 495 496 497 498
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCHW",
        name=None,
    ):
C
cnn 已提交
499
        super(MaxPool2D, self).__init__()
500 501 502
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
503
        self.return_mask = return_mask
504 505 506 507 508
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
509 510 511 512 513 514 515 516 517 518
        return F.max_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
519

520 521
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
522 523
            **self.__dict__
        )
524

525

Z
zhiboniu 已提交
526
class MaxPool3D(Layer):
527
    """
528
    This operation applies 3D max pooling over input features based on the input,
529
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
530 531
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
532

W
Wei Shengyu 已提交
533 534
    Parameters:
        kernel_size(int|list|tuple): The pool kernel size. If the kernel size
535
            is a tuple or list, it must contain three integers,
536
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
537
            Otherwise, the pool kernel size will be the cube of an int.
W
Wei Shengyu 已提交
538
        stride(int|list|tuple, optional): The pool stride size. If pool stride size is a tuple or list,
539 540
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
W
Wei Shengyu 已提交
541 542
            Default None, then stride will be equal to the kernel_size.
        padding(str|int|list|tuple, optional): The padding size. Padding could be in one of the following forms.
543 544 545
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
W
Wei Shengyu 已提交
546
            4. A list[int] or tuple(int) whose length is \6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
547 548
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
W
Wei Shengyu 已提交
549 550 551 552 553 554 555
        ceil_mode(bool, optional): ${ceil_mode_comment}
        return_mask(bool, optional): Whether to return the max indices along with the outputs.
        data_format(str, optional): The data format of the input and output data. An optional string from: `"NCDHW"`,
            `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
556 557


W
Wei Shengyu 已提交
558 559
    Returns:
        A callable object of MaxPool3D.
560 561

    Shape:
W
Wei Shengyu 已提交
562 563 564 565
        - x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of max pool3d  operator, which is a 5-D tensor.
          The data type is same as input x.
566

567 568
    Examples:
        .. code-block:: python
569

W
Wei Shengyu 已提交
570 571
            import paddle
            import paddle.nn as nn
572

W
Wei Shengyu 已提交
573
            # max pool3d
574
            input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
575
            MaxPool3D = nn.MaxPool3D(kernel_size=2,
576
                                   stride=2, padding=0)
W
Wei Shengyu 已提交
577 578
            output = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16]
579

W
Wei Shengyu 已提交
580 581 582 583
            # for return_mask=True
            MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True)
            output, max_indices = MaxPool3D(input)
            # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
584 585
    """

L
Ligoml 已提交
586 587 588 589 590 591 592 593 594 595
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        return_mask=False,
        ceil_mode=False,
        data_format="NCDHW",
        name=None,
    ):
C
cnn 已提交
596
        super(MaxPool3D, self).__init__()
597 598 599
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
600
        self.return_mask = return_mask
601 602 603 604 605
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
L
Ligoml 已提交
606 607 608 609 610 611 612 613 614 615
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_mask=self.return_mask,
            ceil_mode=self.ceil_mode,
            data_format=self.data_format,
            name=self.name,
        )
616

617 618
    def extra_repr(self):
        return 'kernel_size={ksize}, stride={stride}, padding={padding}'.format(
L
Ligoml 已提交
619 620
            **self.__dict__
        )
621

622

Z
zhiboniu 已提交
623
class AdaptiveAvgPool1D(Layer):
624
    r"""
625

626 627 628 629 630
    A 1D adaptive average pooling over an input signal composed
    of several input planes, based on :attr:`output_size`.
    Input and output are in NCL format, where N is batch
    size, C is the number of channels and L is the length of the feature.
    The shape of output will be :math:`[N, C, output\_size]`.
631

632
    The formulation for average adaptive pool1d is
633 634 635

    ..  math::

636
        lstart &= \lfloor i * L_{in} / L_{out}\rfloor,
637

638
        lend &= \lceil(i + 1) * L_{in} / L_{out}\rceil,
639

640
        Output(i) &= \frac{\sum Input[lstart:lend]}{lend - lstart}.
641

W
Wei Shengyu 已提交
642
    Parameters:
643 644
        output_size(int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
645

646
    Returns:
647
        A callable object for computing 1D adaptive average pooling.
648

649 650
    Examples:
        .. code-block:: python
651

W
Wei Shengyu 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lend - lstart)
            #
            import paddle
            import paddle.nn as nn

667
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
668 669 670
            AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
            pool_out = AdaptiveAvgPool1D(data)
            # pool_out shape: [1, 3, 16]
671 672
    """

673
    def __init__(self, output_size, name=None):
C
cnn 已提交
674
        super(AdaptiveAvgPool1D, self).__init__()
675
        self.output_size = output_size
676 677
        self.name = name

678 679 680
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)

681 682 683
    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)

684

Z
zhiboniu 已提交
685
class AdaptiveAvgPool2D(Layer):
686
    r"""
687 688 689 690 691 692 693 694

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

W
Wei Shengyu 已提交
695
        hstart &= floor(i * H_{in} / H_{out})
696

W
Wei Shengyu 已提交
697
        hend &= ceil((i + 1) * H_{in} / H_{out})
698

W
Wei Shengyu 已提交
699
        wstart &= floor(j * W_{in} / W_{out})
700

W
Wei Shengyu 已提交
701
        wend &= ceil((j + 1) * W_{in} / W_{out})
702

W
Wei Shengyu 已提交
703
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
704 705 706


    Parameters:
W
Wei Shengyu 已提交
707
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
708 709
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
710
        data_format(str, optional): The data format of the input and output data. An optional string
711 712
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
W
Wei Shengyu 已提交
713 714
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
715 716

    Shape:
W
Wei Shengyu 已提交
717 718 719 720
        - x(Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
721 722

    Returns:
C
cnn 已提交
723
        A callable object of AdaptiveAvgPool2D.
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
744

745 746
            x = paddle.rand([2, 3, 32, 32])

C
cnn 已提交
747
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
748 749 750 751 752
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
753
        super(AdaptiveAvgPool2D, self).__init__()
754 755 756 757 758
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
759 760 761 762 763 764
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
765

766 767 768
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

769

Z
zhiboniu 已提交
770
class AdaptiveAvgPool3D(Layer):
771
    r"""
772 773 774 775 776 777 778 779

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

W
Wei Shengyu 已提交
780
        dstart &= floor(i * D_{in} / D_{out})
781

W
Wei Shengyu 已提交
782
        dend &= ceil((i + 1) * D_{in} / D_{out})
783

W
Wei Shengyu 已提交
784
        hstart &= floor(j * H_{in} / H_{out})
785

W
Wei Shengyu 已提交
786
        hend &= ceil((j + 1) * H_{in} / H_{out})
787

W
Wei Shengyu 已提交
788
        wstart &= floor(k * W_{in} / W_{out})
789

W
Wei Shengyu 已提交
790
        wend &= ceil((k + 1) * W_{in} / W_{out})
791

W
Wei Shengyu 已提交
792 793
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
794 795 796


    Parameters:
W
Wei Shengyu 已提交
797
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
798 799
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
W
Wei Shengyu 已提交
800
        data_format(str, optional): The data format of the input and output data. An optional string
801 802
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
W
Wei Shengyu 已提交
803 804
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
805
    Shape:
W
Wei Shengyu 已提交
806 807 808 809
        - x(Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64\.
        - output(Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor.
          The data type is same as input x.
810 811

    Returns:
C
cnn 已提交
812
        A callable object of AdaptiveAvgPool3D.
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
836

837 838
            x = paddle.rand([2, 3, 8, 32, 32])

C
cnn 已提交
839
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
840 841 842 843 844
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
845
        super(AdaptiveAvgPool3D, self).__init__()
846 847 848 849 850
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
851 852 853 854 855 856
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name,
        )
857

858 859 860
    def extra_repr(self):
        return 'output_size={}'.format(self._output_size)

861

Z
zhiboniu 已提交
862
class AdaptiveMaxPool1D(Layer):
863 864 865
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
866
    of several input planes, based on the input, output_size, return_mask parameters.
867 868 869 870 871 872 873 874
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

W
Wei Shengyu 已提交
875
        lstart &= floor(i * L_{in} / L_{out})
876

W
Wei Shengyu 已提交
877
        lend &= ceil((i + 1) * L_{in} / L_{out})
878

W
Wei Shengyu 已提交
879
        Output(i) &= max(Input[lstart:lend])
880

W
Wei Shengyu 已提交
881 882 883 884
    Parameters:
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain one int.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along
885
            with outputs. It cannot be set in average pooling type. Default False.
W
Wei Shengyu 已提交
886 887
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
888
    Returns:
W
Wei Shengyu 已提交
889
        A callable object of AdaptiveMaxPool1D.
890 891

    Shape:
W
Wei Shengyu 已提交
892 893 894 895
        - x(Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor.
          The data type is same as input x.
896 897 898 899

    Examples:
        .. code-block:: python

W
Wei Shengyu 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            # max adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = max(input[:, :, lstart: lend])
            #
            import paddle
            import paddle.nn as nn

915
            data = paddle.uniform([1, 3, 32], dtype="float32", min=-1, max=1)
W
Wei Shengyu 已提交
916 917 918 919 920 921 922 923
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
            pool_out = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16]

            # for return_mask = true
            AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
            pool_out, indices = AdaptiveMaxPool1D(data)
            # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
924 925 926

    """

927
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
928
        super(AdaptiveMaxPool1D, self).__init__()
929
        self.output_size = output_size
930
        self.return_mask = return_mask
931 932 933
        self.name = name

    def forward(self, input):
L
Ligoml 已提交
934 935 936
        return F.adaptive_max_pool1d(
            input, self.output_size, self.return_mask, self.name
        )
937

938
    def extra_repr(self):
L
Ligoml 已提交
939 940 941
        return 'output_size={}, return_mask={}'.format(
            self.output_size, self.return_mask
        )
942

943

Z
zhiboniu 已提交
944
class AdaptiveMaxPool2D(Layer):
945 946
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
W
Wei Shengyu 已提交
947 948
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and
    pooling is adaptive one focus on the output size.
949

950
    For adaptive max pool2d:
951

952
    ..  math::
953

W
Wei Shengyu 已提交
954
        hstart &= floor(i * H_{in} / H_{out})
955

W
Wei Shengyu 已提交
956
        hend &= ceil((i + 1) * H_{in} / H_{out})
957

W
Wei Shengyu 已提交
958
        wstart &= floor(j * W_{in} / W_{out})
959

W
Wei Shengyu 已提交
960
        wend &= ceil((j + 1) * W_{in} / W_{out})
961

W
Wei Shengyu 已提交
962
        Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
963

964
    Parameters:
W
Wei Shengyu 已提交
965 966 967 968 969 970 971
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of
            the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
972
    Shape:
W
Wei Shengyu 已提交
973 974 975 976
        - x(Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor.
          The data type is same as input x.
D
Double_V 已提交
977

978
    Returns:
C
cnn 已提交
979
        A callable object of AdaptiveMaxPool2D.
980 981
    Examples:
        .. code-block:: python
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
999

1000 1001
            x = paddle.rand([2, 3, 32, 32])

1002
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
1003 1004 1005
            pool_out, indices = adaptive_max_pool(x = x)
    """

1006
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1007
        super(AdaptiveMaxPool2D, self).__init__()
1008
        self._output_size = output_size
1009
        self._return_mask = return_mask
1010 1011 1012
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1013 1014 1015 1016 1017 1018
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1019

1020
    def extra_repr(self):
L
Ligoml 已提交
1021 1022 1023
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1024

1025

Z
zhiboniu 已提交
1026
class AdaptiveMaxPool3D(Layer):
1027
    """
W
Wei Shengyu 已提交
1028 1029 1030
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions of the output tensor are
    determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus
    on the output size.
1031

1032
    For adaptive max pool3d:
1033

1034
    ..  math::
1035

W
Wei Shengyu 已提交
1036
        dstart &= floor(i * D_{in} / D_{out})
1037

W
Wei Shengyu 已提交
1038
        dend &= ceil((i + 1) * D_{in} / D_{out})
1039

W
Wei Shengyu 已提交
1040
        hstart &= floor(j * H_{in} / H_{out})
1041

W
Wei Shengyu 已提交
1042
        hend &= ceil((j + 1) * H_{in} / H_{out})
1043

W
Wei Shengyu 已提交
1044
        wstart &= floor(k * W_{in} / W_{out})
1045

W
Wei Shengyu 已提交
1046
        wend &= ceil((k + 1) * W_{in} / W_{out})
1047

W
Wei Shengyu 已提交
1048
        Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1049

1050
    Parameters:
W
Wei Shengyu 已提交
1051 1052 1053 1054 1055 1056 1057
        output_size(int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain
            three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as
            that of the input.
        return_mask(bool, optional): If true, the index of max pooling point will be returned along with outputs.
            Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
1058
    Shape:
W
Wei Shengyu 已提交
1059 1060 1061 1062 1063
        - x(Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor.
          The data type is same as input x.

1064
    Returns:
C
cnn 已提交
1065
        A callable object of AdaptiveMaxPool3D.
1066 1067
    Examples:
        .. code-block:: python
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1088

1089
            x = paddle.rand([2, 3, 8, 32, 32])
C
cnn 已提交
1090
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1091 1092
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
1093
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
1094
            out, indices = pool(x)
1095
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1096

1097 1098
    """

1099
    def __init__(self, output_size, return_mask=False, name=None):
C
cnn 已提交
1100
        super(AdaptiveMaxPool3D, self).__init__()
1101
        self._output_size = output_size
1102
        self._return_mask = return_mask
1103 1104 1105
        self._name = name

    def forward(self, x):
L
Ligoml 已提交
1106 1107 1108 1109 1110 1111
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_mask=self._return_mask,
            name=self._name,
        )
1112 1113

    def extra_repr(self):
L
Ligoml 已提交
1114 1115 1116
        return 'output_size={}, return_mask={}'.format(
            self._output_size, self._return_mask
        )
1117 1118


1119
class MaxUnPool1D(Layer):
1120
    r"""
1121 1122
    This API implements max unpooling 1d opereation.

L
Ligoml 已提交
1123 1124
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1125 1126 1127 1128
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
L
Ligoml 已提交
1129

1130 1131 1132 1133
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.
L
Ligoml 已提交
1134

1135 1136 1137 1138 1139 1140
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1141
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool1D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            Unpool1D = paddle.nn.MaxUnPool1D(kernel_size=2, padding=0)
            unpool_out = Unpool1D(pool_out, indices)
            # unpool_out shape: [1, 3, 16]

    """

L
Ligoml 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCL",
        output_size=None,
        name=None,
    ):
1179 1180 1181 1182 1183 1184 1185 1186 1187
        super(MaxUnPool1D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        return F.max_unpool1d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1198 1199 1200 1201 1202

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)


1203
class MaxUnPool2D(Layer):
1204
    r"""
1205 1206
    This API implements max unpooling 2d opereation.

1207 1208 1209
    'max_unpool2d' accepts the output of 'max_unpool2d' as input
    Including the indices of the maximum value and calculating the partial inverse
    All non-maximum values ​​are set to zero.
L
Ligoml 已提交
1210

1211 1212 1213 1214 1215 1216 1217 1218

    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1219
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

    Returns:
        A callable object of MaxUnPool2D.

L
Ligoml 已提交
1241

1242 1243 1244

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1245

1246 1247 1248
        import paddle
        import paddle.nn.functional as F

X
xiaoting 已提交
1249
        data = paddle.rand(shape=[1,1,6,6])
1250 1251 1252
        pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
        # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
        Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0)
X
xiaoting 已提交
1253
        unpool_out = Unpool2D(pool_out, indices)
1254 1255 1256 1257
        # unpool_out shape: [1, 1, 6, 6]

    """

L
Ligoml 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCHW",
        output_size=None,
        name=None,
    ):
1267 1268 1269 1270 1271 1272 1273 1274 1275
        super(MaxUnPool2D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        return F.max_unpool2d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1286 1287 1288

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)
1289 1290 1291


class MaxUnPool3D(Layer):
1292
    r"""
1293 1294
    This API implements max unpooling 3d opereation.

L
Ligoml 已提交
1295 1296
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1297 1298 1299 1300
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
L
Ligoml 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator

L
Ligoml 已提交
1313

1314 1315 1316 1317 1318 1319
    Parameters:
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1320
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:
        A callable object of MaxUnPool3D.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0)
            unpool_out = Unpool3D(pool_out, indices)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """

L
Ligoml 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357
    def __init__(
        self,
        kernel_size,
        stride=None,
        padding=0,
        data_format="NCDHW",
        output_size=None,
        name=None,
    ):
1358 1359 1360 1361 1362 1363 1364 1365 1366
        super(MaxUnPool3D, self).__init__()
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.data_format = data_format
        self.output_size = output_size
        self.name = name

    def forward(self, x, indices):
L
Ligoml 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        return F.max_unpool3d(
            x,
            indices,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            data_format=self.data_format,
            output_size=self.output_size,
            name=self.name,
        )
1377 1378 1379

    def extra_repr(self):
        return 'output_size={}'.format(self.output_size)