graph_reindex.py 6.7 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
20
from paddle import _C_ops, _legacy_C_ops
21
import paddle.utils.deprecated as deprecated
S
Siming Dai 已提交
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
@deprecated(
    since="2.4.0",
    update_to="paddle.geometric.reindex_graph",
    level=1,
    reason="paddle.incubate.graph_reindex will be removed in future",
)
def graph_reindex(
    x,
    neighbors,
    count,
    value_buffer=None,
    index_buffer=None,
    flag_buffer_hashtable=False,
    name=None,
):
S
Siming Dai 已提交
39
    """
40

S
Siming Dai 已提交
41 42 43 44 45 46 47
    Graph Reindex API.

    This API is mainly used in Graph Learning domain, which should be used
    in conjunction with `graph_sample_neighbors` API. And the main purpose
    is to reindex the ids information of the input nodes, and return the 
    corresponding graph edges after reindex.

48
    Notes:
S
Siming Dai 已提交
49
        The number in x should be unique, otherwise it would cause potential errors.
50 51 52
        Besides, we also support multi-edge-types neighbors reindexing. If we have different
        edge_type neighbors for x, we should concatenate all the neighbors and count of x.
        We will reindex all the nodes from 0.
S
Siming Dai 已提交
53

S
Siming Dai 已提交
54 55 56 57 58 59 60 61 62 63 64 65
    Take input nodes x = [0, 1, 2] as an example. 
    If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2], 
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1
    is [0, 4, 7], and the neighbors of 2 is [6, 7].

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
        count (Tensor): The neighbor count of the input nodes `x`. And the 
                        data type should be int32.
66 67 68 69 70
        value_buffer (Tensor, optional): Value buffer for hashtable. The data type should
                                    be int32, and should be filled with -1. Default is None.
        index_buffer (Tensor, optional): Index buffer for hashtable. The data type should
                                    be int32, and should be filled with -1. Default is None.
        flag_buffer_hashtable (bool, optional): Whether to use buffer for hashtable to speed up.
S
Siming Dai 已提交
71 72 73 74 75
                                      Default is False. Only useful for gpu version currently.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
76 77 78 79 80
        - reindex_src (Tensor), The source node index of graph edges after reindex.
        - reindex_dst (Tensor), The destination node index of graph edges after reindex.
        - out_nodes (Tensor), The index of unique input nodes and neighbors before reindex,
          where we put the input nodes `x` in the front, and put neighbor
          nodes in the back.
S
Siming Dai 已提交
81 82 83 84

    Examples:
        .. code-block:: python

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            import paddle

            x = [0, 1, 2]
            neighbors_e1 = [8, 9, 0, 4, 7, 6, 7]
            count_e1 = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors_e1 = paddle.to_tensor(neighbors_e1, dtype="int64")
            count_e1 = paddle.to_tensor(count_e1, dtype="int32")

            reindex_src, reindex_dst, out_nodes = \
                paddle.incubate.graph_reindex(x, neighbors_e1, count_e1)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]

            neighbors_e2 = [0, 2, 3, 5, 1]
            count_e2 = [1, 3, 1]
            neighbors_e2 = paddle.to_tensor(neighbors_e2, dtype="int64")
            count_e2 = paddle.to_tensor(count_e2, dtype="int32")

            neighbors = paddle.concat([neighbors_e1, neighbors_e2])
            count = paddle.concat([count_e1, count_e2])
            reindex_src, reindex_dst, out_nodes = \
                paddle.incubate.graph_reindex(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
S
Siming Dai 已提交
112

S
Siming Dai 已提交
113 114 115
    """
    if flag_buffer_hashtable:
        if value_buffer is None or index_buffer is None:
116 117 118 119
            raise ValueError(
                f"`value_buffer` and `index_buffer` should not"
                "be None if `flag_buffer_hashtable` is True."
            )
S
Siming Dai 已提交
120 121

    if _non_static_mode():
122 123 124 125 126 127 128 129 130
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            flag_buffer_hashtable,
        )
S
Siming Dai 已提交
131 132 133
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
134 135 136
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
S
Siming Dai 已提交
137 138 139
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if flag_buffer_hashtable:
140 141 142 143 144 145
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
S
Siming Dai 已提交
146 147 148 149 150

    helper = LayerHelper("graph_reindex", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if flag_buffer_hashtable else None,
            "HashTable_Index": index_buffer if flag_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": flag_buffer_hashtable},
    )
S
Siming Dai 已提交
167
    return reindex_src, reindex_dst, out_nodes