graph_reindex.py 7.0 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
20
from paddle import _C_ops, _legacy_C_ops
21
import paddle.utils.deprecated as deprecated
S
Siming Dai 已提交
22 23


24 25 26 27
@deprecated(since="2.4.0",
            update_to="paddle.geometric.reindex_graph",
            level=1,
            reason="paddle.incubate.graph_reindex will be removed in future")
S
Siming Dai 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
def graph_reindex(x,
                  neighbors,
                  count,
                  value_buffer=None,
                  index_buffer=None,
                  flag_buffer_hashtable=False,
                  name=None):
    """
    Graph Reindex API.

    This API is mainly used in Graph Learning domain, which should be used
    in conjunction with `graph_sample_neighbors` API. And the main purpose
    is to reindex the ids information of the input nodes, and return the 
    corresponding graph edges after reindex.

S
Siming Dai 已提交
43 44 45 46 47 48
    **Notes**: 
        The number in x should be unique, otherwise it would cause potential errors.
    Besides, we also support multi-edge-types neighbors reindexing. If we have different
    edge_type neighbors for x, we should concatenate all the neighbors and count of x. 
    We will reindex all the nodes from 0. 

S
Siming Dai 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    Take input nodes x = [0, 1, 2] as an example. 
    If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2], 
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1
    is [0, 4, 7], and the neighbors of 2 is [6, 7].

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
        count (Tensor): The neighbor count of the input nodes `x`. And the 
                        data type should be int32.
        value_buffer (Tensor|None): Value buffer for hashtable. The data type should 
                                    be int32, and should be filled with -1.
        index_buffer (Tensor|None): Index buffer for hashtable. The data type should 
                                    be int32, and should be filled with -1.
        flag_buffer_hashtable (bool): Whether to use buffer for hashtable to speed up.
                                      Default is False. Only useful for gpu version currently.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        reindex_src (Tensor): The source node index of graph edges after reindex.
        reindex_dst (Tensor): The destination node index of graph edges after reindex.
        out_nodes (Tensor): The index of unique input nodes and neighbors before reindex,
                            where we put the input nodes `x` in the front, and put neighbor
                            nodes in the back.

    Examples:
        
        .. code-block:: python

        import paddle

        x = [0, 1, 2]
S
Siming Dai 已提交
84 85
        neighbors_e1 = [8, 9, 0, 4, 7, 6, 7]
        count_e1 = [2, 3, 2]
S
Siming Dai 已提交
86
        x = paddle.to_tensor(x, dtype="int64")
S
Siming Dai 已提交
87 88
        neighbors_e1 = paddle.to_tensor(neighbors_e1, dtype="int64")
        count_e1 = paddle.to_tensor(count_e1, dtype="int32")
S
Siming Dai 已提交
89 90

        reindex_src, reindex_dst, out_nodes = \
S
Siming Dai 已提交
91
             paddle.incubate.graph_reindex(x, neighbors_e1, count_e1)
S
Siming Dai 已提交
92 93 94 95
        # reindex_src: [3, 4, 0, 5, 6, 7, 6]
        # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
        # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]

S
Siming Dai 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
        neighbors_e2 = [0, 2, 3, 5, 1]
        count_e2 = [1, 3, 1]
        neighbors_e2 = paddle.to_tensor(neighbors_e2, dtype="int64")
        count_e2 = paddle.to_tensor(count_e2, dtype="int32")
        
        neighbors = paddle.concat([neighbors_e1, neighbors_e2])
        count = paddle.concat([count_e1, count_e2])
        reindex_src, reindex_dst, out_nodes = \
             paddle.incubate.graph_reindex(x, neighbors, count)
        # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
        # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
        # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]

S
Siming Dai 已提交
109 110 111 112 113 114 115 116
    """
    if flag_buffer_hashtable:
        if value_buffer is None or index_buffer is None:
            raise ValueError(f"`value_buffer` and `index_buffer` should not"
                             "be None if `flag_buffer_hashtable` is True.")

    if _non_static_mode():
        reindex_src, reindex_dst, out_nodes = \
117
            _legacy_C_ops.graph_reindex(x, neighbors, count, value_buffer, index_buffer,
S
Siming Dai 已提交
118 119 120 121 122 123 124 125 126 127 128
                                 "flag_buffer_hashtable", flag_buffer_hashtable)
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
    check_variable_and_dtype(neighbors, "Neighbors", ("int32", "int64"),
                             "graph_reindex")
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if flag_buffer_hashtable:
        check_variable_and_dtype(value_buffer, "HashTable_Value", ("int32"),
                                 "graph_reindex")
129
        check_variable_and_dtype(index_buffer, "HashTable_Index", ("int32"),
S
Siming Dai 已提交
130 131 132 133 134 135
                                 "graph_reindex")

    helper = LayerHelper("graph_reindex", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    helper.append_op(type="graph_reindex",
                     inputs={
                         "X":
                         x,
                         "Neighbors":
                         neighbors,
                         "Count":
                         count,
                         "HashTable_Value":
                         value_buffer if flag_buffer_hashtable else None,
                         "HashTable_Index":
                         index_buffer if flag_buffer_hashtable else None,
                     },
                     outputs={
                         "Reindex_Src": reindex_src,
                         "Reindex_Dst": reindex_dst,
                         "Out_Nodes": out_nodes
                     },
                     attrs={"flag_buffer_hashtable": flag_buffer_hashtable})
S
Siming Dai 已提交
155
    return reindex_src, reindex_dst, out_nodes