buffered_reader.cc 11.9 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16
#include "paddle/fluid/platform/profiler.h"
17

Y
yuyang18 已提交
18 19 20
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
21
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
22
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
23 24
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
25 26 27 28
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
29 30 31 32
    position_.pop();
  }
}

Y
yuyang18 已提交
33 34
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
35
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
36 37 38
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
39 40
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
41
  VLOG(1) << "BufferedReader";
42
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
43 44 45 46 47 48 49 50 51 52 53 54 55
  if (platform::is_gpu_place(place_) && !pin_memory) {
    int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(place_)) {
    int dev_idx = BOOST_GET_CONST(platform::NPUPlace, place_).device;
    compute_stream_ =
        ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
                                            .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::NpuEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
  }
#endif
Y
yuyang18 已提交
71
  cpu_buffer_.resize(buffer_size);
72
  cuda_buffer_.resize(buffer_size);
73
  npu_buffer_.resize(buffer_size);
Y
yuyang18 已提交
74
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
75
}
F
fengjiayi 已提交
76

Y
yuyang18 已提交
77
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
78
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
79
    ReadAsync(i);
Y
yuyang18 已提交
80 81
  }
}
F
fengjiayi 已提交
82

Y
yuyang18 已提交
83
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
84 85 86
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
87

Y
yuyang18 已提交
88 89 90
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
91

92
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)  // @{ Group GPU Place
Y
yuyang18 已提交
93
    if (platform::is_gpu_place(place_)) {
94 95 96
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
97
      } else {
98
        PADDLE_ENFORCE_EQ(
99
            cuda.size(), cpu.size(),
100 101
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
102
      }
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
118
        // NODE(chenweihang): When we use CUDAPinned Memory, we need call
119 120 121 122 123
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
124 125 126 127
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
128 129
            cuda_pinned_ptrs[i] =
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type());
130 131 132 133 134 135
            auto size =
                cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());

            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i],
                         BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()),
                         cpu[i].data<void>(), size);
136

137 138
            cuda[i].set_lod(cpu[i].lod());
          } else {
139 140 141 142
            // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or
            // others, we don't copy the memory of it to CUDAPinnedPlace, but
            // we should share tensor data to cuda[i]
            cuda[i].ShareDataWith(cpu[i]);
143 144 145 146 147 148 149 150 151 152 153 154 155 156
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
157

158 159 160 161 162
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
163 164 165 166 167 168
#ifdef PADDLE_WITH_HIP
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
169 170 171 172
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
173
#endif
174 175 176 177 178 179

        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
          auto cpu_ptr = cpu[i].data<void>();
          auto gpu_ptr = gpu_ptrs[i];
180 181
          auto size =
              cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
          if (platform::is_cuda_pinned_place(cpu_place)) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else if ((platform::is_gpu_place(cpu_place))) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr,
                         BOOST_GET_CONST(platform::CPUPlace, cpu_place),
                         cpu_ptr, size);
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         cuda_pinned_place, cuda_pinned_ptr, size,
                         stream_.get());
202 203 204
#ifdef PADDLE_WITH_HIP
            PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
205
            PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
206
#endif
207 208
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
209
        }
210 211 212
#ifdef PADDLE_WITH_HIP
        PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
213
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
214
#endif
Y
yuyang18 已提交
215
      }
Y
yuyang18 已提交
216
    }
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#endif

#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(place_)) {
      TensorVec &npu = npu_buffer_[i];
      if (npu.empty()) {
        npu.resize(cpu.size());
      } else {
        PADDLE_ENFORCE_EQ(
            npu.size(), cpu.size(),
            platform::errors::InvalidArgument(
                "Input tensor number on NPU and CPU devices are not matched. "
                "The number on NPU is %d, on CPU is %d",
                npu.size(), cpu.size()));
      }

      std::vector<void *> npu_ptrs;
      npu_ptrs.reserve(cpu.size());
      for (size_t i = 0; i < cpu.size(); ++i) {
        npu[i].Resize(cpu[i].dims());
        npu[i].set_layout(cpu[i].layout());
        npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
      }

      platform::SetNPUDeviceId(
          BOOST_GET_CONST(platform::NPUPlace, place_).device);
      PADDLE_ENFORCE_NPU_SUCCESS(
          aclrtRecordEvent(events_[i].get(), compute_stream_));
      PADDLE_ENFORCE_NPU_SUCCESS(
          aclrtStreamWaitEvent(stream_.get(), events_[i].get()));

      platform::RecordEvent record_event("BufferedReader:MemoryCopy");
      for (size_t i = 0; i < cpu.size(); ++i) {
        auto cpu_place = cpu[i].place();
        auto cpu_ptr = cpu[i].data<void>();
        auto npu_ptr = npu_ptrs[i];
        auto size =
            cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
        if ((platform::is_npu_place(cpu_place))) {
          memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
                       BOOST_GET_CONST(platform::NPUPlace, cpu_place), cpu_ptr,
                       size, stream_.get());
        } else {
          memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
                       BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr,
                       size, stream_.get());
          PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
        }
        npu[i].set_lod(cpu[i].lod());
      }
      PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
    }
#endif
Y
yuyang18 已提交
270
    return i;
Y
yuyang18 已提交
271 272
  }));
}
F
fengjiayi 已提交
273

Y
yuyang18 已提交
274
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
275
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
276
  reader_->Shutdown();
Y
yuyang18 已提交
277 278 279
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
280
  prev_pos_ = -1UL;
Y
yuyang18 已提交
281
}
F
fengjiayi 已提交
282

Y
yuyang18 已提交
283 284
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
285
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
286
}
F
fengjiayi 已提交
287

Y
yuyang18 已提交
288
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
289 290 291 292 293 294 295 296 297 298 299 300
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

301
  if (platform::is_gpu_place(place_)) {
302
    *out = std::move(cuda_buffer_[i]);
303
  } else if (platform::is_npu_place(place_)) {
304 305 306 307
    *out = std::move(npu_buffer_[i]);
  } else {
    *out = std::move(cpu_buffer_[i]);
  }
Y
yuyang18 已提交
308 309 310 311 312 313 314 315

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
316 317 318 319 320
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle