buffered_reader.cc 8.5 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/reader/buffered_reader.h"
16
#include "paddle/fluid/platform/profiler.h"
17

Y
yuyang18 已提交
18 19 20
namespace paddle {
namespace operators {
namespace reader {
F
fengjiayi 已提交
21
BufferedReader::~BufferedReader() {
Q
Qiao Longfei 已提交
22
  VLOG(1) << "~BufferedReader";
F
fengjiayi 已提交
23 24
  reader_->Shutdown();
  while (!position_.empty()) {
Z
Zeng Jinle 已提交
25 26 27 28
    auto &front = position_.front();
    if (front.valid()) {
      front.wait();
    }
F
fengjiayi 已提交
29 30 31 32
    position_.pop();
  }
}

Y
yuyang18 已提交
33 34
BufferedReader::BufferedReader(
    const std::shared_ptr<framework::ReaderBase> &reader,
35
    const platform::Place &place, size_t buffer_size, bool pin_memory)
Y
yuyang18 已提交
36 37 38
    : framework::DecoratedReader(reader),
      thread_pool_(1),
      place_(place),
39 40
      buffer_size_(buffer_size),
      pin_memory_(pin_memory) {
Q
Qiao Longfei 已提交
41
  VLOG(1) << "BufferedReader";
42 43 44 45 46 47 48 49 50 51 52 53 54 55
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(place_) && !pin_memory) {
    int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
    compute_stream_ =
        ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
                                             .Get(place_)))
            ->stream();
    events_.resize(buffer_size);
    for (auto &event : events_) {
      event = platform::CudaEventResourcePool::Instance().New(dev_idx);
    }
    stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
  }
#endif
56
  is_same_place_ = false;
Y
yuyang18 已提交
57
  cpu_buffer_.resize(buffer_size);
58
  cuda_buffer_.resize(buffer_size);
Y
yuyang18 已提交
59
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
60
}
F
fengjiayi 已提交
61

Y
yuyang18 已提交
62
void BufferedReader::ReadTillBufferFullAsync() {
Y
yuyang18 已提交
63
  for (size_t i = 0; i < buffer_size_; ++i) {
Y
yuyang18 已提交
64
    ReadAsync(i);
Y
yuyang18 已提交
65 66
  }
}
F
fengjiayi 已提交
67

Y
yuyang18 已提交
68
void BufferedReader::ReadAsync(size_t i) {
Y
yuyang18 已提交
69 70 71
  position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
    TensorVec &cpu = cpu_buffer_[i];
    reader_->ReadNext(&cpu);
Y
yuyang18 已提交
72

Y
yuyang18 已提交
73 74 75
    if (cpu.empty()) {
      return -1UL;
    }
Y
yuyang18 已提交
76

D
Dun Liang 已提交
77
#ifdef PADDLE_WITH_CUDA
Y
yuyang18 已提交
78
    if (platform::is_gpu_place(place_)) {
79 80 81
      TensorVec &cuda = cuda_buffer_[i];
      if (cuda.empty()) {
        cuda.resize(cpu.size());
82
      } else {
83
        PADDLE_ENFORCE_EQ(
84
            cuda.size(), cpu.size(),
85 86
            platform::errors::InvalidArgument(
                "Input tensor number on GPU and CPU devices are not matched."));
87
      }
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      if (pin_memory_) {
        // NOTE: [Copy processing of different input devices]
        // We may accept input tensor in three different devices:
        //   - CPUPlace
        //   - CUDAPinnedPlace
        //   - CUDAPlace
        // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
        // in BufferedReader thread, we do data copy as follows:
        //   - If src Tensor on CPU memory, we copy it to CUDAPinned memory
        //   - IF src Tensor on CUDAPinned memory, we use it directly
        //   - IF src Tensor on CUDA memory, we use it directly
        platform::CUDAPinnedPlace cuda_pinned_place;
        std::vector<void *> cuda_pinned_ptrs;
        cuda_pinned_ptrs.reserve(cpu.size());
        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
103 104 105 106 107 108
        // NODE(chenwehiang): When we use CUDAPinned Memory, we need call
        // cudaHostAlloc, that is a CUDA API, calling CUDA API need load
        // cuda lib into device, it will cost hundreds of MB of GPU memory.
        // If we don't set Device here, which will use CUDAPlace(0) default.
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        for (size_t i = 0; i < cpu.size(); ++i) {
          if (platform::is_cpu_place(cpu[i].place())) {
            cuda[i].Resize(cpu[i].dims());
            cuda[i].set_layout(cpu[i].layout());
            cuda_pinned_ptrs.emplace_back(
                cuda[i].mutable_data(cuda_pinned_place, cpu[i].type()));
            auto size =
                cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());

            memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i],
                         BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()),
                         cpu[i].data<void>(), size);
            cuda[i].set_lod(cpu[i].lod());
          } else {
            // we set same place flag & use cpu[i] directly
            is_same_place_ = true;
          }
        }
      } else {
        // NOTE(liangdun): using async copy instead of TensorCopySync
        // TensorCopySync would block other stream, because TensorCopySync
        // issues the copying command to the default stream, it will make two
        // commands from different streams cannot run concurrently.
        std::vector<void *> gpu_ptrs;
        gpu_ptrs.reserve(cpu.size());
        for (size_t i = 0; i < cpu.size(); ++i) {
          cuda[i].Resize(cpu[i].dims());
          cuda[i].set_layout(cpu[i].layout());
          gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
        }
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        // NOTE(zjl): cudaStreamWaitEvent() must be called after all
        // cuda[i].mutable_data() is called, since some ops release
        // cuda memory immediately without waiting cuda kernel ends
        platform::SetDeviceId(
            BOOST_GET_CONST(platform::CUDAPlace, place_).device);
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaEventRecord(events_[i].get(), compute_stream_));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));

        platform::RecordEvent record_event("BufferedReader:MemoryCopy");
        for (size_t i = 0; i < cpu.size(); ++i) {
          auto cpu_place = cpu[i].place();
          auto cpu_ptr = cpu[i].data<void>();
          auto gpu_ptr = gpu_ptrs[i];
155 156
          auto size =
              cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
          if (platform::is_cuda_pinned_place(cpu_place)) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else if ((platform::is_gpu_place(cpu_place))) {
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         BOOST_GET_CONST(platform::CUDAPlace, cpu_place),
                         cpu_ptr, size, stream_.get());
          } else {
            platform::CUDAPinnedPlace cuda_pinned_place;
            framework::LoDTensor cuda_pinned_tensor;
            cuda_pinned_tensor.Resize(cpu[i].dims());
            auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
                cuda_pinned_place, cpu[i].type());
            memory::Copy(cuda_pinned_place, cuda_pinned_ptr,
                         BOOST_GET_CONST(platform::CPUPlace, cpu_place),
                         cpu_ptr, size);
            memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
                         cuda_pinned_place, cuda_pinned_ptr, size,
                         stream_.get());
            PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
          }
          cuda[i].set_lod(cpu[i].lod());
S
sneaxiy 已提交
180
        }
181
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
Y
yuyang18 已提交
182
      }
Y
yuyang18 已提交
183
    }
D
Dun Liang 已提交
184
#endif
Y
yuyang18 已提交
185
    return i;
Y
yuyang18 已提交
186 187
  }));
}
F
fengjiayi 已提交
188

Y
yuyang18 已提交
189
void BufferedReader::ShutdownImpl() {
Q
Qiao Longfei 已提交
190
  VLOG(1) << "ShutdownImpl";
Y
yuyang18 已提交
191
  reader_->Shutdown();
Y
yuyang18 已提交
192 193 194
  while (!position_.empty()) {
    position_.pop();
  }
Y
yuyang18 已提交
195
  prev_pos_ = -1UL;
Y
yuyang18 已提交
196
}
F
fengjiayi 已提交
197

Y
yuyang18 已提交
198 199
void BufferedReader::StartImpl() {
  reader_->Start();
Y
yuyang18 已提交
200
  ReadTillBufferFullAsync();
Y
yuyang18 已提交
201
}
F
fengjiayi 已提交
202

Y
yuyang18 已提交
203
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
Y
yuyang18 已提交
204 205 206 207 208 209 210 211 212 213 214 215
  if (position_.empty()) {
    out->clear();
    return;
  }
  size_t i = position_.front().get();
  position_.pop();

  if (i == -1UL) {
    ReadNextImpl(out);
    return;
  }

216
  *out = std::move((platform::is_gpu_place(place_) && !is_same_place_)
217
                       ? cuda_buffer_[i]
218
                       : cpu_buffer_[i]);
Y
yuyang18 已提交
219 220 221 222 223 224 225 226

  // Do not push current position into ReadAsync. Push the previous position
  // Since all computation in fluid are async, change the data of
  // current position may cause data error.
  if (prev_pos_ != -1Ul) {
    ReadAsync(prev_pos_);
  }
  prev_pos_ = i;
Y
yuyang18 已提交
227 228 229 230 231
}

}  // namespace reader
}  // namespace operators
}  // namespace paddle