creation.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops
17 18 19
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
20
from paddle.fluid.data_feeder import convert_dtype
21 22
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
23

24 25
import numpy as np

26 27 28 29 30 31 32 33 34 35 36 37 38
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


39
def _infer_dense_shape(indices, values):
40 41 42
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
43 44 45 46
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
47 48


49 50 51 52
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
53
    elif not isinstance(
54 55
        place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)
    ):
56 57 58 59 60 61
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


62 63 64 65 66 67 68
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


69 70 71
def sparse_coo_tensor(
    indices, values, shape=None, dtype=None, place=None, stop_gradient=True
):
72
    r"""
73
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices
74 75 76 77 78 79 80 81
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
82
            original dense tensor. If not provided the smallest shape will be inferred to
83
            hold all elements.
84
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
85
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
86
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
87
            except for python float number which gets dtype from ``get_default_type`` .
88 89 90
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
91 92 93 94 95 96 97 98 99 100
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
Z
zhangkaihuo 已提交
101 102 103 104 105 106 107 108 109 110

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        # print(coo)
        # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
        #       indices=[[0, 1, 2],
        #                [1, 2, 0]],
        #       values=[1., 2., 3.])
111 112
    """

113 114
    if in_dynamic_mode():
        place = _get_place(place)
115

116
        if not isinstance(indices, core.eager.Tensor):
117 118 119
            indices = to_tensor(
                indices, dtype=None, place=place, stop_gradient=True
            )
120 121 122 123
        if not isinstance(values, core.eager.Tensor):
            values = to_tensor(values, dtype, place, stop_gradient)
        if len(indices.shape) != 2:
            raise ValueError("'indices' must be 2-D.")
124

125 126
        nnz = indices.shape[1]
        sparse_dim = indices.shape[0]
127

128
        _check_indices_dtype(indices.dtype)
129

130 131
        if nnz != values.shape[0]:
            raise ValueError(
132 133 134 135
                "the indices and values must have same number of non-zero, but get {} and {}".format(
                    nnz, values.shape[0]
                )
            )
136

137
        dense_dim = len(values.shape) - 1
138

139 140
        if not indices.place._equals(place):
            indices = indices._copy_to(place, False)
141

142 143 144 145
        if not values.place._equals(place):
            values = values._copy_to(place, False)
        values = _handle_dtype(values, dtype)
        values.stop_gradient = stop_gradient
146

147
        min_shape = _infer_dense_shape(indices, values)
148

149 150 151 152 153 154
        if shape is None:
            shape = min_shape
        else:
            if shape < min_shape:
                raise ValueError(
                    "the minimun shape required is {}, but get {}".format(
155 156 157
                        min_shape, shape
                    )
                )
158 159
            if len(shape) != sparse_dim + dense_dim:
                raise ValueError(
160 161 162 163
                    "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}".format(
                        sparse_dim, dense_dim, len(shape)
                    )
                )
164

165 166 167 168 169 170 171 172 173 174
        return _C_ops.sparse_sparse_coo_tensor(values, indices, shape)

    else:
        op_type = 'sparse_sparse_coo_tensor'
        inputs = {'values': values, 'indices': indices}
        if shape[0] is None:
            shape[0] = -1
        attrs = {'dense_shape': shape}
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(dtype)
175 176 177
        helper.append_op(
            type=op_type, inputs=inputs, outputs={'out': out}, attrs=attrs
        )
178
        return out
179 180


181
# TODO: need to support shape is None
182
@dygraph_only
183 184 185
def sparse_csr_tensor(
    crows, cols, values, shape, dtype=None, place=None, stop_gradient=True
):
186
    r"""
187
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the
188
    ``crows``, ``cols`` and ``values``.
189
    Currently, the crows and cols of each batch must be incrementd.
190 191

    Args:
192 193 194
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the
            starting position of the first non-zero element of each row in values.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
195
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
196
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
197 198 199
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
200
            original dense tensor.
201
            hold all elements.
202
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
203
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
204
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
205
            except for python float number which gets dtype from ``get_default_type`` .
206 207 208
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
209 210 211 212 213 214 215 216 217 218
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
Z
zhangkaihuo 已提交
219 220 221 222 223 224 225 226 227 228 229

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        # print(csr)
        # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
        #       crows=[0, 2, 3, 5],
        #       cols=[1, 3, 2, 0, 1],
        #       values=[1, 2, 3, 4, 5])
230
    """
231 232 233

    place = _get_place(place)

234 235 236 237 238 239
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
240 241 242 243 244

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
245
        raise ValueError(
246 247 248 249
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".format(
                shape
            )
        )
Z
zhangkaihuo 已提交
250
    rows = shape[len(shape) - 2]
251

252
    if not crows.place._equals(place):
253
        crows = crows._copy_to(place, False)
254 255

    if not cols.place._equals(place):
256
        cols = cols._copy_to(place, False)
257 258

    if not values.place._equals(place):
259 260
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
261
    values.stop_gradient = stop_gradient
262 263 264 265

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

266
    if len(cols) != len(values):
267 268 269
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
Z
zhangkaihuo 已提交
270
        if crows.shape[0] != rows + 1:
271
            raise ValueError(
272 273 274 275
                "The length({}) of crows must be equal to the rows({})+1 of matrix.".format(
                    crows.shape[0], rows
                )
            )
276 277 278 279 280
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
281 282
                "the last value of crows must be equal the number of non-zero"
            )
283
    else:
Z
zhangkaihuo 已提交
284
        if crows.shape[0] % (rows + 1) != 0:
285
            raise ValueError(
286 287 288 289
                "The length({}) of crows must be divisible the rows({})+1 of matrix.".format(
                    crows.shape[0], rows
                )
            )
290
    # TODO(zkh2016): check whether the value in crows and cols is legal
291

292 293 294
    return core.eager.sparse_csr_tensor(
        crows, cols, values, shape, stop_gradient
    )