creation.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from paddle import _C_ops
from ..framework import core, dygraph_only
18
from ..framework import _current_expected_place, _get_paddle_place
19 20 21 22
from ..tensor import to_tensor
from ..tensor import max
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype

23 24
import numpy as np

25 26 27 28 29 30 31 32 33 34 35 36 37
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


38
def _infer_dense_shape(indices, values):
39 40 41
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
42 43 44 45
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
46 47


48 49 50 51 52 53 54 55 56 57 58 59
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


60 61 62 63 64 65 66
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
@dygraph_only
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices 
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. If not provided the smallest shape will be inferred to 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``indices`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
114
            dense_shape = [3, 3]
115 116 117 118 119 120 121 122
            coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

123 124
    place = _get_place(place)

125 126 127 128 129 130 131
    if not isinstance(indices, core.eager.Tensor):
        indices = to_tensor(
            indices, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(indices.shape) != 2:
        raise ValueError("'indices' must be 2-D.")
132

133 134 135 136 137 138 139 140 141 142 143 144
    nnz = indices.shape[1]
    sparse_dim = indices.shape[0]

    _check_indices_dtype(indices.dtype)

    if nnz != values.shape[0]:
        raise ValueError(
            "the indices and values must have same number of non-zero, but get {} and {}".
            format(nnz, values.shape[0]))

    dense_dim = len(values.shape) - 1

145
    if not indices.place._equals(place):
146
        indices = indices._copy_to(place, False)
147 148

    if not values.place._equals(place):
149 150
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
151 152
    values.stop_gradient = stop_gradient

153 154
    min_shape = _infer_dense_shape(indices, values)

155
    if shape is None:
156 157 158 159 160 161 162 163 164
        shape = min_shape
    else:
        if shape < min_shape:
            raise ValueError("the minimun shape required is {}, but get {}".
                             format(min_shape, shape))
        if len(shape) != sparse_dim + dense_dim:
            raise ValueError(
                "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}".
                format(sparse_dim, dense_dim, len(shape)))
165 166 167

    return _C_ops.final_state_sparse_create_sparse_coo_tensor(values, indices,
                                                              shape)
168 169 170 171 172 173 174 175 176 177 178 179 180 181


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the 
    ``crows``, ``cols`` and ``values``.
182
    Currently, the crows and cols of each batch must be incrementd.
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    Args:
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the 
            starting position of the first non-zero element of each row in values. 
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``crow``, ``cols`` and ``values`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
232 233 234

    place = _get_place(place)

235 236 237 238 239 240
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
241 242 243 244 245

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
246
        raise ValueError(
247 248
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".
            format(shape))
249

250
    if not crows.place._equals(place):
251
        crows = crows._copy_to(place, False)
252 253

    if not cols.place._equals(place):
254
        cols = cols._copy_to(place, False)
255 256

    if not values.place._equals(place):
257 258
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
259
    values.stop_gradient = stop_gradient
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

    if (len(cols) != len(values)):
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
        if crows.shape[0] != shape[0] + 1:
            raise ValueError(
                "The length({}) of crows must be equal to the rows({})+1 of matrix.".
                format(crows.shape[0], shape[0]))
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
                "the last value of crows must be equal the number of non-zero")
    else:
        if crows.shape[0] % (shape[0] + 1) != 0:
            raise ValueError(
                "The length({}) of crows must be divisible the rows({})+1 of matrix.".
                format(crows.shape[0], shape[0]))
    # TODO(zkh2016): check whether the value in crows and cols is legal 

285 286
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)