utils.py 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import logging
import socket
import time
import os
import signal
import copy
import sys
23
import six
24 25 26 27 28 29 30 31
import subprocess
from contextlib import closing
import socket

logger = logging.getLogger("root")
logger.propagate = False


32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def get_cluster_from_args(args, selected_gpus):
    node_ips = [x.strip() for x in args.cluster_node_ips.split(',')]
    node_ip = args.node_ip
    node_rank = node_ips.index(node_ip)

    logger.debug("parsed from args:node_ips:{} node_ip:{} node_rank:{}".format(
        node_ips, node_ip, node_rank))

    free_ports = None
    if not args.use_paddlecloud and len(
            node_ips) <= 1 and args.started_port is None:
        free_ports = find_free_ports(len(selected_gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        started_port = 6070
        if args.started_port is not None:
            started_port = args.started_port

        free_ports = [
            x for x in range(started_port, started_port + len(selected_gpus))
        ]

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


def get_gpus(selected_gpus):
    if selected_gpus is None:
        from paddle.fluid import core
        gpus_num = core.get_cuda_device_count()
        gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            gpus = [x.strip() for x in selected_gpus.split(',')]
        else:
            # change selected_gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
            # therefore selected_gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in selected_gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                "your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                % (x, cuda_visible_devices)
            gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in selected_gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            selected_gpus, gpus, cuda_visible_devices_list))

    return gpus


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class Hdfs(object):
    def __init__(self):
        self.hdfs_ugi = None
        self.hdfs_name = None
        self.hdfs_path = None

    def is_valid(self):
        return self.hdfs_ugi is not None and \
            self.hdfs_name is not None and \
            self.hdfs_path is not None

    def __str__(self):
        return "hdfs_ugi:{} hdfs_name:{} hdfs_path{}".format(
            self.hdfs_ugi, self.hdfs_name, self.hdfs_path)

    def __eq__(self, n):
        return self.hdfs_ugi == n.hdfs_ugi and \
            self.hdfs_name == n.hdfs_name and \
            self.hdfs_path == n.hdfs_path

    def __ne__(self, n):
        return not self == n


class Cluster(object):
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

    def update_pods(cluster):
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)

        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
    def __init__(self):
        self.gpus = []
        self.endpoint = None
        self.rank = None

    def __str__(self):
        return "gpu:{} endpoint:{} rank:{}".format(self.gpus, self.endpoint,
                                                   self.rank)

    def __eq__(self, t):
        if len(self.gpus) != len(t.gpus):
            return False

        if self.endpoint != t.endpoint or \
G
gongweibao 已提交
213
                self.rank != t.rank:
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            return False

        for a, b in zip(self.gpus, t.gpus):
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

    def rank(self):
        return self.rank


class Pod(object):
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
        self.gpus = []

    def __str__(self):
        return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{}".format(
            self.rank, self.id, self.addr, self.port, self.gpus,
            [str(t) for t in self.trainers])

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
            logger.debug("pod {} != pod".format(self, pod))
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def rank(self):
        return self.rank

    def get_visible_gpus(self):
        r = ""
        for g in self.gpus:
            r += "{},".format(g)

        assert r != "", "this pod {} can't see any gpus".format(self)

        r = r[:-1]
        return r


def get_logger(log_level, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


297 298
def get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
299 300 301 302 303 304
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
305 306 307 308 309
        cur_node_endpoints = trainer_endpoints[node_rank]
        # when use paddlecloud, endpoints may > selected_gpus(user_defined)
        assert len(cur_node_endpoints) >= len(
            selected_gpus
        ), "current trainer_endpoints size should be greater equal than selected_gpus size."
310 311 312
        for i in range(len(selected_gpus)):
            trainer = Trainer()
            trainer.gpus.append(selected_gpus[i])
313
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
314 315 316 317 318 319 320 321 322 323 324 325 326
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
    for p in procs:
        if p.proc.poll() is None:
M
mapingshuo 已提交
327
            p.proc.terminate()
328 329
            if p.log_fn:
                p.log_fn.close()
330 331
            logger.debug("terminate process id:{}".format(p.proc.pid))

M
mapingshuo 已提交
332 333
    #wait all process terminiated
    time.sleep(3)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def find_free_ports(num):
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
        if step > 100:
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


403 404 405 406 407 408 409 410 411 412 413
def _prepare_trainer_env(cluster, trainer):
    proc_env = {
        "FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in trainer.gpus]),
        "PADDLE_TRAINER_ID": "%d" % trainer.rank,
        "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
        "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
        "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
    }
    return proc_env


414 415 416 417
class TrainerProc(object):
    def __init__(self):
        self.proc = None
        self.log_fn = None
418
        self.log_offset = None
419
        self.rank = None
420
        self.local_rank = None
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        self.cmd = None


def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for idx, t in enumerate(pod.trainers):
439
        proc_env = _prepare_trainer_env(cluster, t)
440 441 442 443 444 445 446 447 448 449 450 451
        current_env.update(proc_env)

        logger.debug("trainer proc env:{}".format(current_env))

        cmd = [sys.executable, "-u", training_script] + training_script_args

        logger.info("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
            fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
452
            proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
453 454 455 456 457 458
        else:
            proc = subprocess.Popen(cmd, env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
459
        tp.local_rank = idx
460
        tp.log_fn = fn
461
        tp.log_offset = fn.tell() if fn else None
462 463 464 465 466 467 468
        tp.cmd = cmd

        procs.append(tp)

    return procs


469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


484 485 486 487 488 489 490
def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
491 492 493
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
        raise
    except SystemExit:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise
    except:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise

    return alive