utils.py 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23
import inspect
24 25
import os, sys
import shutil
26 27
import six
import tempfile
28
import textwrap
29
import numpy as np
30

31
import paddle
32
from paddle.fluid import unique_name
33
from paddle.fluid.data_feeder import convert_dtype
34
from paddle.fluid import core
35 36
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
37 38
import collections
from functools import reduce
39
import warnings
40

41 42 43 44 45
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
46 47
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
48
ALREADY_D2S = '__already_d2s'
49
ARGS_NAME = '__args'
50 51
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
52

53 54 55

class BaseNodeVisitor(gast.NodeVisitor):
    """
56
    Implement customized NodeVisitor inherited from gast.NodeVisitor.
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


75 76 77 78 79 80 81 82 83 84 85 86 87
# imp is deprecated in python3
from importlib.machinery import SourceFileLoader

dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

88
DEL_TEMP_DIR = True  # A flag to avoid atexit.register more than once
89 90
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
91 92
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
93 94 95 96 97
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

98
RE_PYNAME = '[a-zA-Z0-9_]+'
99
RE_PYMODULE = r'[a-zA-Z0-9_]+\.'
100

101 102
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
103 104 105 106 107 108 109 110 111 112 113 114
FullArgSpec = collections.namedtuple(
    'FullArgSpec',
    [
        'args',
        'varargs',
        'varkw',
        'defaults',
        'kwonlyargs',
        'kwonlydefaults',
        'annotations',
    ],
)
115 116


117 118 119 120 121 122 123
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

124
     Note:
125 126 127 128 129 130 131 132 133 134
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
135
           size. For example, it is useful to set changeable batch size as "None"
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

152 153 154 155 156 157 158 159 160 161
    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        stop_gradient=True,
        lod_level=lod_level,
        is_data=True,
        need_check_feed=False,
    )
162

163

164
def create_undefined_variable():
165 166 167 168 169 170 171
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_NO_VALUE_MAGIC_NUM,
    )

    var = data_layer_not_check(
        unique_name.generate("undefined_var"), [1], "float64"
    )
172
    var.stop_gradient = False
173 174 175 176
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
177
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
178
    helper.main_program.current_block_idx = saved_block_ids
179
    return var
180 181


182 183 184 185 186 187
class UndefinedVar:
    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
188 189
            "local variable '{}' should be created before using it."
        )
190 191


192 193 194 195 196
class Dygraph2StaticException(Exception):
    def __init__(self, message):
        super().__init__(message)


197 198 199 200 201 202 203
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


204 205 206 207 208
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
209 210 211 212 213 214 215 216 217
        return FullArgSpec(
            args=argspec.args,
            varargs=argspec.varargs,
            varkw=argspec.keywords,
            defaults=argspec.defaults,
            kwonlyargs=[],
            kwonlydefaults=None,
            annotations={},
        )
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
234
        default_kwarg_names = arg_names[-len(default_values) :]
235 236 237 238 239
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
240 241 242 243 244 245 246 247 248
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


249 250 251 252 253 254 255 256
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

257
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
258
    """
259
    if isinstance(x, (tuple, list, set)):
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

277

278 279 280 281 282 283 284
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
285 286 287 288 289 290 291 292

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
293
    try:
294 295 296 297 298
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
299
        import paddle
L
liym27 已提交
300
        import paddle.fluid as fluid
301
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
302
        import paddle.fluid.layers as layers
303
        import paddle.jit.dy2static as _jst
304

305
        from paddle.fluid.dygraph import to_variable
306 307
        from paddle import to_tensor

308 309 310
        return eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, module_prefix)
        )
311
    except Exception:
312 313 314 315
        return False


def is_dygraph_api(node):
316

317
    # Note: A api in module dygraph_to_static is not a real dygraph api.
318
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
319 320
        return False

321 322
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
323
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
324 325 326


def is_paddle_api(node):
327 328 329 330 331 332
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
333 334 335 336 337 338 339 340


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
341 342 343 344

        module_result = eval(
            "_is_api_in_module_helper({}, '{}')".format(func_str, "numpy")
        )
345 346 347 348
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
349
    except Exception:
350 351 352
        return False


353 354 355
def is_control_flow_to_transform(
    node, static_analysis_visitor=None, var_name_to_type=None
):
356
    """
L
liym27 已提交
357 358
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
359
    """
360 361 362 363 364 365
    assert isinstance(
        node, gast.AST
    ), "The type of input node must be gast.AST, but received %s." % type(node)
    visitor = IsControlFlowVisitor(
        node, static_analysis_visitor, node_var_type_map=var_name_to_type
    )
L
liym27 已提交
366 367
    need_to_transform = visitor.transform()
    return need_to_transform
368 369


370 371
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
372
    func_src = astor.to_source(gast.gast_to_ast(node.func))
373
    import paddle.fluid as fluid
374

375 376 377 378 379 380 381 382 383 384 385
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
386 387
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
388 389
            "to static graph at present.".format(dygraph_class)
        )
390 391 392 393 394 395 396 397 398 399


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
400 401 402 403
            gast.keyword(
                arg="num_flatten_dims", value=gast.Constant(value=-1, kind=None)
            )
        )
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

422 423 424 425 426 427 428 429 430 431 432
    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None, type_comment=None
            ),
        ),
    )
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

453
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
454
    import paddle.fluid as fluid
455

456
    if method_name == "__init__" or eval(
457 458 459 460 461
        "issubclass({}, fluid.dygraph.Layer)".format(class_src)
    ):
        full_args = eval(
            "inspect.getargspec({}.{})".format(class_src, method_name)
        )
462 463 464 465 466 467 468 469 470 471 472
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
473 474 475


def create_api_shape_node(tensor_shape_node):
476 477 478
    assert isinstance(
        tensor_shape_node, (gast.Name, gast.Attribute, gast.Subscript)
    )
479 480 481

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
482
            func=gast.parse('paddle.shape').body[0].value,
483
            args=[tensor_shape_node],
484 485
            keywords=[],
        )
486
        return api_shape_node
487 488 489

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
490
            func=gast.parse('paddle.shape').body[0].value,
491
            args=[tensor_shape_node.value],
492 493
            keywords=[],
        )
494 495 496 497 498 499
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
500 501


502
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
503 504 505
    return gast.parse(
        '%s = paddle.full(%s, "%s", %s)' % (name, str(shape), str(value), dtype)
    )
506 507 508 509


def get_attribute_full_name(node):
    assert isinstance(
510 511
        node, gast.Attribute
    ), "Input non-Attribute node to get attribute full name"
512 513 514
    return astor.to_source(gast.gast_to_ast(node)).strip()


515
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
516
    """
517 518 519 520 521 522 523
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
524 525 526 527
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
528
        raise TypeError(
529 530 531
            'name_ids must be list or tuple or set, but received %s'
            % type(type(name_ids))
        )
532 533 534

    def create_node_for_name(name):
        if '.' not in name:
535 536 537
            return gast.Name(
                id=name, ctx=ctx, annotation=None, type_comment=None
            )
538 539 540
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
541
    if len(gast_names) == 1 and not gen_tuple_if_single:
542 543 544 545 546 547 548 549 550 551 552 553 554
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
555 556
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
557 558
    else:
        nodes.append(gast.Return(value=None))
559 560 561 562 563 564 565 566
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None,
    )
567 568 569
    return func_def_node


570 571 572 573 574 575 576 577
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


578 579 580 581 582 583 584 585 586
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


587 588 589 590
def get_temp_dir():
    """
    Return @to_static temp directory.
    """
591
    dir_name = "paddle/to_static_tmp/{pid}".format(pid=os.getpid())
592
    temp_dir = os.path.join(os.path.expanduser('~/.cache'), dir_name)
593

594 595 596 597 598 599 600 601 602 603
    is_windows = sys.platform.startswith('win')
    if is_windows:
        temp_dir = os.path.normpath(temp_dir)

    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)

    return temp_dir


604
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
605 606
    """
    Transform modified AST of decorated function into python callable object.
607 608
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
609
    """
610

611 612 613 614 615 616 617 618 619 620 621 622
    def remove_if_exit(dir_path):
        if os.path.exists(dir_path):
            shutil.rmtree(dir_path)

    def func_prefix(func):
        pre_fix = func.__name__
        if hasattr(func, '__self__'):
            try:
                pre_fix = func.__self__.__class__.__name__ + '_' + func.__name__
            except:
                pass
        return pre_fix
623

624
    source = ast_to_source_code(ast_root)
625
    source = _inject_import_statements() + source
626
    temp_dir = get_temp_dir()
627 628 629 630 631 632 633 634
    f = tempfile.NamedTemporaryFile(
        mode='w',
        prefix=func_prefix(dyfunc),
        suffix='.py',
        delete=False,
        dir=temp_dir,
        encoding='utf-8',
    )
635 636 637 638
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

639 640 641 642 643
    global DEL_TEMP_DIR
    if delete_on_exit and DEL_TEMP_DIR:
        # Clear temporary files in TEMP_DIR while exitting Python process
        atexit.register(remove_if_exit, dir_path=temp_dir)
        DEL_TEMP_DIR = False
644

645
    func_name = dyfunc.__name__
646
    module = SourceFileLoader(module_name, f.name).load_module()
W
WeiXin 已提交
647 648 649 650 651 652 653 654
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
655
        raise ValueError(
656 657 658
            'Function: %s doesn\'t exist in the Module transformed from AST.'
            % func_name
        )
659 660 661 662 663 664 665 666
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


667 668
def _inject_import_statements():
    import_statements = [
669 670 671 672 673 674 675 676
        "import paddle",
        "from paddle import Tensor",
        "import paddle.fluid as fluid",
        "import paddle.jit.dy2static as _jst",
        "from typing import *",
        "import numpy as np",
        "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)",
677 678 679 680
    ]
    return '\n'.join(import_statements) + '\n'


681 682 683 684 685
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
686

687
    for k, v in six.iteritems(src_globals):
688 689 690
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
691 692


693 694 695 696 697 698
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
699 700 701 702
            "The type of 'function' should be a function or method, but received {}.".format(
                type(function).__name__
            )
        )
703
    source_code_list, _ = inspect.getsourcelines(function)
704
    # Replace comments with blank lines so that error messages are not misplaced
705
    source_code_list = [
706 707
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
708 709
    ]
    source_code = ''.join(source_code_list)
710 711 712 713 714 715
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


716 717
def ast_to_source_code(ast_node):
    """
718
    Transforms ast node into source code.
719 720 721
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
722 723 724
            "Type of ast_root should be gast.AST or ast.AST, but received %s."
            % type(ast_node)
        )
725 726
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
727 728 729 730 731 732

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
733
    return source_code
L
liym27 已提交
734 735 736 737 738 739


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
740 741 742 743 744 745 746 747 748 749 750
    is_compare_node = isinstance(
        node,
        (
            gast.Compare,
            gast.BoolOp,
            gast.UnaryOp,
            gast.For,
            gast.If,
            gast.While,
        ),
    )
L
liym27 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
766 767 768
            if (isinstance(child, gast.Constant) and child.value is None) or (
                isinstance(child, gast.Name) and child.id == 'None'
            ):
L
liym27 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
786
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
787
        6. calls `range` function in `for` statement and the argument of range is Tensor.
788 789
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

803 804 805
    def __init__(
        self, ast_node, static_analysis_visitor=None, node_var_type_map=None
    ):
L
liym27 已提交
806 807 808
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
809 810
            ast_node
        )
L
liym27 已提交
811 812 813
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
814

L
liym27 已提交
815 816
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
817 818
        self.node_to_wrapper_map = (
            self.static_analysis_visitor.get_node_to_wrapper_map()
L
liym27 已提交
819 820 821 822 823 824 825 826
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
827 828 829 830 831 832 833 834
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
835 836 837 838 839 840 841 842 843
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
844 845 846
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
847 848 849 850
                if (
                    node.iter.func.id == "range"
                    or node.iter.func.id == "enumerate"
                ):
851 852 853 854 855 856 857 858 859 860
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
861 862
            else:
                return
863 864 865
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
866
        else:
L
liym27 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
905
            self.visit(child)
L
liym27 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
949 950 951
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import (
            NodeVarType,
        )
L
liym27 已提交
952 953 954 955 956

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
957
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
958 959
                    return True
        # if not found, look up the node_to_wrapper_map by node.
960
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
961
        if wrapper_node is not None:
962
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
963 964 965 966 967 968
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
969 970


971 972 973 974 975 976 977 978 979 980
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
981
    while _is_wrapped(unwrapped_f):
982 983 984
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
985 986


C
Chen Weihang 已提交
987
def input_specs_compatible(src_input_specs, desired_input_specs):
988 989 990 991
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
992 993 994 995
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
996 997
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
998 999
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
1000
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
1001 1002 1003 1004
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
1005 1006 1007
        for (src_spec, desired_spec) in zip(
            src_input_specs, desired_input_specs
        ):
1008
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
1009 1010
                desired_spec, paddle.static.InputSpec
            ):
1011 1012 1013 1014
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
1015 1016
                    return False

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
1044 1045

    return True
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
1092 1093


1094 1095
class NameScope:
    def __init__(self):
1096 1097 1098
        """
        A NameScope is a object which manager all the variable names.
        only FunctionDef and Controlflow node will have a namescope property.
1099

1100
        type can be "function" and "controlflow"
1101

1102
        we don't analyze the read only variable because they don't affect the analysis.
1103 1104 1105 1106 1107 1108
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1109
        self.created = set()  # useful for control flow compatibility
1110
        # only valid in control_flow nodes
1111 1112
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1113 1114 1115 1116 1117

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
1118 1119
        """vars existing in current scope.
        they must not contain qualified names.
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1131
    def variadic_length_vars(self):
1132
        """
1133
        At present, we do not support global append, such as
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
1148 1149
                    f" tensor array."
                )
1150 1151 1152
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1153

1154 1155
    def control_flow_vars(self):
        valid_names = self.w_vars
1156
        tmp = (self.father.global_vars & valid_names,)
1157 1158
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1159
    def _is_simple_name(self, name):
1160 1161
        if '.' in name or '[' in name:
            return False
1162 1163 1164
        return True

    def is_global_var(self, name):
1165
        """
1166
        Return whether the name is a var created in global scope.
1167
        Search from bottom to top. If it is not created or modified,
1168 1169 1170 1171
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
1172 1173
            name
        ), "is_global_var accept a simple name, but get `{name}`."
1174 1175
        ancestor = self
        while ancestor is not None:
1176 1177 1178 1179
            if name in ancestor.globals:
                return True
            if name in (ancestor.nonlocals | ancestor.w_vars):
                return False
1180 1181 1182 1183 1184
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1185 1186 1187 1188 1189 1190

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1191
        self.push_pop_vars |= name_scope.push_pop_vars
1192 1193 1194


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    """analyze the liveness of a function.

    every variables stored in this scope will be collected,
    in addition with global/nonlocal information and
    push_pop information.

    1. global variable is stored in node.var_globals.
    2. nonlocal variable is stored in node.var_nonlocals.
    3. arguments is stored in node.var_args.
    4. if a variable's push and pop attribute is called,
       it will be collected in push_pop_vars. They are
       used for transformation to tensor_array.
       NOTE: push_pop_vars **may not** in w_vars.
       a.push(0) don't modify the variable a, but the content
       of a.

    For example:

    def func(*args, **kargs):
        a = 12
        global i,j
        nonlocal x,y
        print(a)
        i = k
        b = []
        c = [1,2,3]
        for m in range(10):
            q = 12
            b.push(1)
            c.pop()

    After this visitor we have:
    # node is the FunctionDef node with name: "func"
    node.pd_scope = NameScope(
        globals = ['i', 'j'],
        nonlocals = ['x', 'y'],
        args = ['args', 'kargs'],
        wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
        push_pop_vars = ['b', 'c']
    )
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
1254 1255
        if len(self.scope_node_stack) == 1:
            return None
1256 1257 1258
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
1259 1260
        if len(self.scope_node_stack) == 1:
            return None
1261 1262 1263 1264
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1265
    def visit_ListComp(self, node):
1266 1267 1268
        """[ i for i in range(10) ]
        In this case, `i` will not created in FunctionScope.
        We don't collect `i` by not calling generic_visit.
1269 1270 1271 1272
        """
        pass

    def visit_DictComp(self, node):
1273
        """the same as ListComp."""
1274 1275
        pass

1276 1277 1278 1279 1280 1281 1282 1283 1284
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):
        def pre_func():
            self._current_name_scope().args |= set(
1285 1286
                self._get_argument_names(node)
            )
1287 1288

        def post_func():
1289 1290
            """NOTE: why we need merge w_vars and push_pop_vars here ?
            because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
1291
            """
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
            from paddle.fluid.dygraph.dygraph_to_static.loop_transformer import (
                WHILE_CONDITION_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
            )
            from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import (
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
            )

1303
            control_flow_function_def = [
1304 1305 1306 1307 1308 1309
                WHILE_BODY_PREFIX,
                WHILE_BODY_PREFIX,
                FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX,
                TRUE_FUNC_PREFIX,
                FALSE_FUNC_PREFIX,
1310 1311 1312 1313
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
1314 1315
                    if node.name.startswith(prefix):
                        return True
1316 1317 1318
                return False

            if self._father_name_scope() and is_control_flow_def_node():
1319 1320 1321 1322 1323 1324
                self._father_name_scope().w_vars |= (
                    self._current_name_scope().w_vars
                )
                self._father_name_scope().push_pop_vars |= (
                    self._current_name_scope().push_pop_vars
                )
1325 1326 1327 1328

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
1329 1330
        """scope node main visit logic.
        pre_func and post_func is callbacks
1331 1332 1333
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1334
        self._current_name_scope().set_father(self._nearest_function_scope())
1335 1336
        if pre_func:
            pre_func()
1337
        self.generic_visit(node)
1338 1339
        if post_func:
            post_func()
1340 1341 1342 1343 1344
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):
        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1345
            self._nearest_function_scope().merge_from(
1346 1347 1348 1349 1350 1351
                self._current_name_scope()
            )
            self._current_name_scope().created = (
                self._nearest_function_scope().existed_vars()
                - node.before_created
            )
1352
            # gather created vars into father and used in CreateUndefinedVarTransform
1353 1354 1355
            self._nearest_function_scope().created |= (
                self._current_name_scope().created
            )
1356 1357

        def pre_func():
1358 1359 1360 1361 1362
            setattr(
                node,
                "before_created",
                self._nearest_function_scope().existed_vars(),
            )
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1399
    def _get_argument_names(self, node):
1400 1401 1402
        """get all arguments name in the functiondef node.
        this node is local to the function and shouldn't
        be created.
1403 1404
        """
        assert isinstance(
1405 1406
            node, gast.FunctionDef
        ), "Input node is not function define node"
1407 1408 1409 1410 1411 1412 1413
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
1427 1428 1429
        """.format(
            func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX)
        )
1430 1431 1432
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1433
    node = create_nonlocal_stmt_nodes(names)
1434 1435
    if not names:
        return empty_node()
1436
    if node == []:
1437 1438
        nonlocal_vars = "\n"
    else:
1439
        nonlocal_vars = ast_to_source_code(node[0])
1440 1441
    template = """
    def {func_name}():
1442
        {nonlocal_vars}
1443
        return {vars},
1444 1445 1446
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1447
        nonlocal_vars=nonlocal_vars,
1448 1449
        vars=",".join(names),
    )
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
1466 1467 1468
        """.format(
            func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX), args=ARGS_NAME
        )
1469 1470 1471
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1472
    node = create_nonlocal_stmt_nodes(names)
1473 1474
    if not names:
        return empty_node()
1475
    if node == []:
1476 1477
        nonlocal_vars = "\n"
    else:
1478
        nonlocal_vars = ast_to_source_code(node[0])
1479 1480
    template = """
    def {func_name}({args}):
1481
        {nonlocal_vars}
1482
        {vars}, = {args}
1483 1484 1485 1486
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1487
        nonlocal_vars=nonlocal_vars,
1488 1489
        vars=",".join(names),
    )
1490 1491 1492
    return gast.parse(textwrap.dedent(func_def)).body[0]


1493
def create_nonlocal_stmt_nodes(names):
1494 1495 1496
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1497
    mapped = list(filter(lambda n: '[' not in n, mapped))
1498
    names = sorted(
1499 1500
        mapped, key=mapped.index
    )  # to keep the order, we can't use set() to unique
1501 1502
    if not names:
        return []
1503
    func_code = "nonlocal {}".format(','.join(names))
1504
    return [gast.parse(func_code).body[0]]
1505 1506 1507


class GetterSetterHelper:
1508 1509 1510 1511
    """we have two classes of names in setter and getter function:
    w_vars(loop_vars) + push_pop_vars
    To simplify the setter logic in convert_while and convert_cond,
    we extract the helper class here.
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
1527 1528
        if names is None:
            names = []
1529
        vars = self.getter()
1530 1531
        if vars is None:
            return tuple()
1532
        for n in names:
1533 1534 1535 1536 1537
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1538 1539 1540
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
1541 1542 1543 1544
        if names is None:
            names = []
        if values is None:
            values = []
1545
        vars = self.getter()
1546 1547
        if vars is None:
            return
1548
        for n in names:
1549 1550 1551 1552 1553
            assert (
                n in self.name2id
            ), "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys()
            )
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1568
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1569
    return "(%s, )" % ','.join(names_str)