utils.py 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23 24 25 26
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
import paddle
31
from paddle.fluid import unique_name
32
from paddle.fluid.data_feeder import convert_dtype
33
from paddle.fluid import core
34 35
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers import assign
36 37
import collections
from functools import reduce
38
import warnings
39

40 41 42 43 44
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
45 46
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
47
ALREADY_D2S = '__already_d2s'
48
ARGS_NAME = '__args'
49 50
# NOTE(liym27): Please use `getattr(ast_node, ORIGI_INFO)` instead of . operation to get the original information of ast node.
ORIGI_INFO = "Original information of source code for ast node."
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
# imp is deprecated in python3
from importlib.machinery import SourceFileLoader

dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
89 90
FOR_ITER_TARGET_PREFIX = '__for_loop_iter_target'
FOR_ITER_ITERATOR_PREFIX = '__for_loop_iter_iterator'
91 92 93 94 95 96 97 98 99 100 101 102 103
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'

# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

     Note: 
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" 
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

139 140 141 142 143 144 145 146
    return helper.create_global_variable(name=name,
                                         shape=shape,
                                         dtype=dtype,
                                         type=core.VarDesc.VarType.LOD_TENSOR,
                                         stop_gradient=True,
                                         lod_level=lod_level,
                                         is_data=True,
                                         need_check_feed=False)
147

148

149 150 151 152
def create_undefined_variable():
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
    var = data_layer_not_check(unique_name.generate("undefined_var"), [1],
                               "float64")
153
    var.stop_gradient = False
154 155 156 157
    # the variable is created in block(0), we append assign in block(0) either.
    helper = LayerHelper('create_undefined_variable', **locals())
    saved_block_ids = helper.main_program.current_block_idx
    helper.main_program.current_block_idx = 0
158
    assign(RETURN_NO_VALUE_MAGIC_NUM, var)
159
    helper.main_program.current_block_idx = saved_block_ids
160
    return var
161 162


163 164 165 166 167 168 169 170 171 172
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


173 174 175 176 177 178
class Dygraph2StaticException(Exception):

    def __init__(self, message):
        super().__init__(message)


179 180 181 182 183 184 185
def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


186 187 188 189 190
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
191 192 193 194 195 196 197
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
220 221 222 223 224 225 226 227 228
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


229 230 231 232 233 234 235 236
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

237
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
238
    """
239
    if isinstance(x, (tuple, list, set)):
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

257

258 259 260 261 262 263 264
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
265 266 267 268 269 270 271 272

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
273
    try:
274 275 276 277 278
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
279
        import paddle
L
liym27 已提交
280
        import paddle.fluid as fluid
281
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
282
        import paddle.fluid.layers as layers
283
        import paddle.jit.dy2static as _jst
284

285
        from paddle.fluid.dygraph import to_variable
286 287
        from paddle import to_tensor

288 289
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
290
    except Exception:
291 292 293 294
        return False


def is_dygraph_api(node):
295

296
    # Note: A api in module dygraph_to_static is not a real dygraph api.
297
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
298 299
        return False

300 301
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
302
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
303 304 305


def is_paddle_api(node):
306 307 308 309 310 311
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
312 313 314 315 316 317 318 319 320 321 322 323 324 325


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
326
    except Exception:
327 328 329
        return False


L
liym27 已提交
330 331 332
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
333
    """
L
liym27 已提交
334 335
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
336 337 338
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
339 340 341
    visitor = IsControlFlowVisitor(node,
                                   static_analysis_visitor,
                                   node_var_type_map=var_name_to_type)
L
liym27 已提交
342 343
    need_to_transform = visitor.transform()
    return need_to_transform
344 345


346 347
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
348
    func_src = astor.to_source(gast.gast_to_ast(node.func))
349 350 351 352 353 354 355 356 357 358 359 360
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
361 362 363
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
364 365 366 367 368 369 370 371 372 373


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
374 375
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

394 395 396 397 398 399 400 401 402
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

423
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
424 425 426
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
427 428
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
429 430 431 432 433 434 435 436 437 438 439
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
440 441 442


def create_api_shape_node(tensor_shape_node):
443 444 445 446 447
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
448
            func=gast.parse('paddle.shape').body[0].value,
449 450 451
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
452 453 454

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
455
            func=gast.parse('paddle.shape').body[0].value,
456 457 458 459 460 461 462 463
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
464 465


466
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
467 468
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
469 470 471 472 473 474 475 476 477


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


478
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
479
    """
480 481 482 483 484 485 486
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
487 488 489 490
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
491 492 493
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
494 495 496 497 498 499 500 501 502 503

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
504
    if len(gast_names) == 1 and not gen_tuple_if_single:
505 506 507 508 509 510 511 512 513 514 515 516 517
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
518 519
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
520 521
    else:
        nodes.append(gast.Return(value=None))
522 523 524 525 526 527
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
528 529 530
    return func_def_node


531 532 533 534 535 536 537 538
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


539 540 541 542 543 544 545 546 547
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


548
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
549 550
    """
    Transform modified AST of decorated function into python callable object.
551 552
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
553
    """
554

555
    def remove_if_exit(filepath):
556 557 558
        if os.path.exists(filepath):
            os.remove(filepath)

559
    source = ast_to_source_code(ast_root)
560
    source = _inject_import_statements() + source
561

562 563 564 565
    f = tempfile.NamedTemporaryFile(mode='w',
                                    suffix='.py',
                                    delete=False,
                                    encoding='utf-8')
566 567 568 569 570
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
571 572
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
573

T
tianshuo78520a 已提交
574
    module = SourceFileLoader(module_name, f.name).load_module()
575
    func_name = dyfunc.__name__
W
WeiXin 已提交
576 577 578 579 580 581 582 583
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
584 585 586
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
587 588 589 590 591 592 593 594
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


595 596
def _inject_import_statements():
    import_statements = [
597
        "import paddle", "from paddle import Tensor",
598
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
599 600
        "from typing import *", "import numpy as np", "import warnings",
        "warnings.filterwarnings('ignore', category=DeprecationWarning)"
601 602 603 604
    ]
    return '\n'.join(import_statements) + '\n'


605 606 607 608 609
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
610

611
    for k, v in six.iteritems(src_globals):
612 613 614
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
615 616


617 618 619 620 621 622
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
623 624
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
625
    source_code_list, _ = inspect.getsourcelines(function)
626
    # Replace comments with blank lines so that error messages are not misplaced
627
    source_code_list = [
628 629
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
630 631
    ]
    source_code = ''.join(source_code_list)
632 633 634 635 636 637
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


638 639
def ast_to_source_code(ast_node):
    """
640
    Transforms ast node into source code.
641 642 643 644 645 646 647
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
648 649 650 651 652 653

    # Do not wrap lines even if they are too long
    def pretty_source(source):
        return ''.join(source)

    source_code = astor.to_source(ast_node, pretty_source=pretty_source)
654
    return source_code
L
liym27 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
678 679 680
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
698
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
699
        6. calls `range` function in `for` statement and the argument of range is Tensor.
700 701
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
737 738 739 740 741 742 743 744
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
745 746 747 748 749 750 751 752 753
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
754 755 756 757 758 759 760 761 762 763 764 765 766 767
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
768 769
            else:
                return
770 771 772
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
773
        else:
L
liym27 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
812
            self.visit(child)
L
liym27 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
862
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
863 864
                    return True
        # if not found, look up the node_to_wrapper_map by node.
865
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
866
        if wrapper_node is not None:
867
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
868 869 870 871 872 873
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
874 875


876 877 878 879 880 881 882 883 884 885 886 887 888 889
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
890 891


C
Chen Weihang 已提交
892
def input_specs_compatible(src_input_specs, desired_input_specs):
893 894 895 896
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
897 898 899 900
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
901 902
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
903 904
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
905
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
906 907 908 909
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
910 911 912 913 914 915 916 917
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
918 919
                    return False

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
947 948

    return True
949

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
995 996


997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
class NameScope:

    def __init__(self):
        """ 
            A NameScope is a object which manager all the variable names. 
            only FunctionDef and Controlflow node will have a namescope property.

            type can be "function" and "controlflow"

            we don't analyze the read only variable because they don't affect the analysis.
        """
        self.globals = set()
        self.nonlocals = set()
        self.args = set()
        self.father = None  # point to the nearest function name scope.
        self.w_vars = set()  # all qualified + normal names been stored
1013
        self.created = set()  # useful for control flow compatibility
1014
        # only valid in control_flow nodes
1015 1016
        # may be remove later.
        self.push_pop_vars = set()  # we call push and pop in the vars
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    def set_father(self, father):
        self.father = father

    def existed_vars(self):
        """ vars existing in current scope. 
            they must not contain qualified names.
        """
        local_vars = self.w_vars - self.globals - self.nonlocals - self.args
        return set(filter(lambda x: '.' not in x, local_vars))

    def created_vars(self):
        return self.created

    def modified_vars(self):
        # may be globals / non-locals / args / qualified names and created_vars
        return self.w_vars

1035
    def variadic_length_vars(self):
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        """ 
        At present, we do not support global append, such as
        
        import numpy as np
        a = []
        def func():
            a.append() # global names `a`, we will raise a warning.
            p.append(a, 1) # global names `np`, we will raise a warning.
        """
        non_global_push_pop_names = []
        for var in self.push_pop_vars:
            if self._is_simple_name(var) and self.is_global_var(var):
                warnings.warn(
                    f"Find variable `{var}` defined in global scope"
                    f" and call `{var}.append() or {var}.pop()`"
                    f", which will be ignored and never be transfered into"
                    f" tensor array.")
            else:
                non_global_push_pop_names.append(var)
        return set(non_global_push_pop_names)
1056

1057 1058 1059 1060 1061
    def control_flow_vars(self):
        valid_names = self.w_vars
        tmp = self.father.global_vars & valid_names,
        return {"global": tmp, "nonlocal": self.w_vars - tmp}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    def _is_simple_name(self, name):
        if '.' in name or '[' in name: return False
        return True

    def is_global_var(self, name):
        """ 
        Return whether the name is a var created in global scope.
        Search from bottom to top. If it is not created or modified, 
        it means global vars; otherwise, it means local vars.
        Only valid after FunctionNameLivenessAnalysis visitor.
        """
        assert self._is_simple_name(
            name), "is_global_var accept a simple name, but get `{name}`."
        ancestor = self
        while ancestor is not None:
            if name in ancestor.globals: return True
            if name in (ancestor.nonlocals | ancestor.w_vars): return False
            ancestor = ancestor.father
        return True

    def is_local_var(self, name):
        return not self.is_global_var(name)
1084 1085 1086 1087 1088 1089

    def merge_from(self, name_scope):
        self.globals |= name_scope.globals
        self.nonlocals |= name_scope.nonlocals
        self.args |= name_scope.args
        self.w_vars |= name_scope.w_vars
1090
        self.push_pop_vars |= name_scope.push_pop_vars
1091 1092 1093 1094 1095 1096


class FunctionNameLivenessAnalysis(gast.NodeVisitor):
    """ analyze the liveness of a function.

        every variables stored in this scope will be collected,
1097 1098
        in addition with global/nonlocal information and 
        push_pop information.
1099 1100 1101 1102

        1. global variable is stored in node.var_globals.
        2. nonlocal variable is stored in node.var_nonlocals.
        3. arguments is stored in node.var_args.
1103 1104 1105 1106 1107 1108
        4. if a variable's push and pop attribute is called, 
           it will be collected in push_pop_vars. They are
           used for transformation to tensor_array.
           NOTE: push_pop_vars **may not** in w_vars. 
           a.push(0) don't modify the variable a, but the content
           of a.
1109 1110 1111 1112 1113 1114 1115 1116 1117

        For example:

        def func(*args, **kargs):
            a = 12
            global i,j
            nonlocal x,y
            print(a)
            i = k
1118 1119
            b = []
            c = [1,2,3]
1120 1121
            for m in range(10):
                q = 12
1122 1123
                b.push(1)
                c.pop()
1124 1125 1126 1127 1128 1129 1130
        
        After this visitor we have: 
        # node is the FunctionDef node with name: "func"
        node.pd_scope = NameScope(
            globals = ['i', 'j'],
            nonlocals = ['x', 'y'],
            args = ['args', 'kargs'], 
1131 1132
            wr_vars = ['a', 'i', 'q', 'm', 'c', 'b']
            push_pop_vars = ['b', 'c']
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        )
    """

    def __init__(self, root_node):
        self.scope_node_stack = []  # controlflow, functiondef node
        self.visit(root_node)

    def _reset_name_scope(self, node):
        # always reset the node as empty namescope.
        setattr(node, "pd_scope", NameScope())

    def _get_name_scope(self, node):
        if not hasattr(node, "pd_scope"):
            setattr(node, "pd_scope", NameScope())
        return node.pd_scope

    def _current_name_scope(self):
        return self._get_name_scope(self.scope_node_stack[-1])

    def _father_name_scope(self):
        if len(self.scope_node_stack) == 1: return None
        return self._get_name_scope(self.scope_node_stack[-2])

    def _nearest_function_scope(self):
        if len(self.scope_node_stack) == 1: return None
        for node in self.scope_node_stack[-2::-1]:
            if isinstance(node, gast.FunctionDef):
                return self._get_name_scope(node)

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    def visit_ListComp(self, node):
        """ [ i for i in range(10) ]
            In this case, `i` will not created in FunctionScope. 
            We don't collect `i` by not calling generic_visit.
        """
        pass

    def visit_DictComp(self, node):
        """ the same as ListComp.
        """
        pass

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    def visit_Name(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            self._current_name_scope().w_vars.add(node.id)

    def visit_FunctionDef(self, node):

        def pre_func():
            self._current_name_scope().args |= set(
                self._get_argument_names(node))

        def post_func():
1187
            """ NOTE: why we need merge w_vars and push_pop_vars here ? 
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                because we do ifelse_transformer after loop_transformer. Loops will changed into functioons. but we know this function will be called in if. so we add w_vars to father function scope.
            """
            from paddle.fluid.dygraph.dygraph_to_static.loop_transformer import WHILE_CONDITION_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX, FOR_BODY_PREFIX
            from paddle.fluid.dygraph.dygraph_to_static.ifelse_transformer import TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            control_flow_function_def = [
                WHILE_BODY_PREFIX, WHILE_BODY_PREFIX, FOR_CONDITION_PREFIX,
                FOR_BODY_PREFIX, TRUE_FUNC_PREFIX, FALSE_FUNC_PREFIX
            ]

            def is_control_flow_def_node():
                for prefix in control_flow_function_def:
                    if node.name.startswith(prefix): return True
                return False

            if self._father_name_scope() and is_control_flow_def_node():
                self._father_name_scope().w_vars |= self._current_name_scope(
                ).w_vars
1205 1206
                self._father_name_scope(
                ).push_pop_vars |= self._current_name_scope().push_pop_vars
1207 1208 1209 1210 1211 1212 1213 1214 1215

        self._visit_scope_node(node, pre_func, post_func)

    def _visit_scope_node(self, node, pre_func, post_func):
        """ scope node main visit logic.
            pre_func and post_func is callbacks
        """
        self._reset_name_scope(node)
        self.scope_node_stack.append(node)
1216
        self._current_name_scope().set_father(self._nearest_function_scope())
1217 1218 1219 1220 1221 1222 1223 1224 1225
        if pre_func: pre_func()
        self.generic_visit(node)
        if post_func: post_func()
        self.scope_node_stack.pop()

    def _visit_controlflow_node(self, node):

        def post_func():
            self._father_name_scope().merge_from(self._current_name_scope())
1226 1227
            self._nearest_function_scope().merge_from(
                self._current_name_scope())
1228 1229
            self._current_name_scope().created = self._nearest_function_scope(
            ).existed_vars() - node.before_created
1230 1231 1232
            # gather created vars into father and used in CreateUndefinedVarTransform
            self._nearest_function_scope().created |= self._current_name_scope(
            ).created
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

        def pre_func():
            setattr(node, "before_created",
                    self._nearest_function_scope().existed_vars())

        self._visit_scope_node(node, pre_func, post_func)

    def visit_For(self, node):
        self._visit_controlflow_node(node)

    def visit_While(self, node):
        self._visit_controlflow_node(node)

    def visit_If(self, node):
        self._visit_controlflow_node(node)

    def visit_Global(self, node):
        self._current_name_scope().globals |= set(node.names)

    def visit_Nonlocal(self, node):
        self._current_name_scope().nonlocals |= set(node.names)

    def visit_Attribute(self, node):
        self.generic_visit(node)
        write_context = (gast.Store, gast.AugStore, gast.Del)
        if isinstance(node.ctx, write_context):
            name = ast_to_source_code(node).strip()
            self._current_name_scope().w_vars.add(name)

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    def visit_Call(self, node):
        self.generic_visit(node)
        if not isinstance(node.func, gast.Attribute):
            return
        variadic_length_method = ['append', 'pop']
        if node.func.attr not in variadic_length_method:
            return
        # we don't treat push and pop as a write operator. such as a[i]=10 is not modify a.
        name = ast_to_source_code(node.func.value).strip()
        self._current_name_scope().push_pop_vars.add(name)

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    def _get_argument_names(self, node):
        """ get all arguments name in the functiondef node.
            this node is local to the function and shouldn't 
            be created.
        """
        assert isinstance(
            node, gast.FunctionDef), "Input node is not function define node"
        names = [a for a in node.args.args]
        names.append(node.args.vararg)
        names.append(node.args.kwarg)
        names = [i.id for i in names if i is not None]
        return names


1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1304
    node = create_nonlocal_stmt_nodes(names)
1305 1306
    if not names:
        return empty_node()
1307
    if node == []:
1308 1309
        nonlocal_vars = "\n"
    else:
1310
        nonlocal_vars = ast_to_source_code(node[0])
1311 1312
    template = """
    def {func_name}():
1313
        {nonlocal_vars}
1314
        return {vars},
1315 1316 1317
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
1318
        nonlocal_vars=nonlocal_vars,
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
1341
    node = create_nonlocal_stmt_nodes(names)
1342 1343
    if not names:
        return empty_node()
1344
    if node == []:
1345 1346
        nonlocal_vars = "\n"
    else:
1347
        nonlocal_vars = ast_to_source_code(node[0])
1348 1349
    template = """
    def {func_name}({args}):
1350
        {nonlocal_vars}
1351
        {vars}, = {args}
1352 1353 1354 1355
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
1356
        nonlocal_vars=nonlocal_vars,
1357 1358 1359 1360
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


1361
def create_nonlocal_stmt_nodes(names):
1362 1363 1364
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
1365
    mapped = list(filter(lambda n: '[' not in n, mapped))
1366 1367 1368
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
1369 1370
    if not names:
        return []
1371
    func_code = "nonlocal {}".format(','.join(names))
1372
    return [gast.parse(func_code).body[0]]
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424


class GetterSetterHelper:
    """ we have two classes of names in setter and getter function: 
        w_vars(loop_vars) + push_pop_vars
        To simplify the setter logic in convert_while and convert_cond,
        we extract the helper class here.
    """

    def __init__(self, getter_func, setter_func, *name_lists):
        name_lists = map(lambda x: [] if x is None else x, name_lists)
        name_sets = map(lambda x: set(x), name_lists)
        self._union = list(reduce(lambda x, y: x | y, name_sets, set()))
        self._union.sort()
        self.getter = getter_func
        self.setter = setter_func
        self.name2id = {name: idx for idx, name in enumerate(self._union)}

    def union(self):
        return self._union

    def get(self, names):
        if names is None: names = []
        vars = self.getter()
        if vars is None: return tuple()
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        return tuple(map(lambda n: vars[self.name2id[n]], names))

    def set(self, names, values):
        if names is None: names = []
        if values is None: values = []
        vars = self.getter()
        if vars is None: return
        for n in names:
            assert n in self.name2id, "the name `{}` not in name union set`{}`.".format(
                n, self.name2id.keys())
        vars = list(vars)
        indices = list(map(lambda n: self.name2id[n], names))
        for i, v in zip(indices, values):
            vars[i] = v
        self.setter(vars)


def create_name_str(name_ids):
    """
    Return "('x', 'y')" for [x, y]
    """
    if not name_ids:
        return 'None'

1425
    names_str = ["'%s'" % (name.replace("'", "\\'")) for name in name_ids]
1426
    return "(%s, )" % ','.join(names_str)