test_reduce_op.py 14.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
guosheng 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
20 21 22
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
G
guosheng 已提交
23 24


25
class TestSumOp(OpTest):
G
guosheng 已提交
26
    def setUp(self):
27
        self.op_type = "reduce_sum"
28
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
29
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
G
guosheng 已提交
30

31 32
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
33

34 35
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
36 37


38 39 40
class TestMeanOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
41
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
W
whs 已提交
42 43 44 45
        self.attrs = {'dim': [1]}
        self.outputs = {
            'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
46

47 48
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
49

50 51
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
52 53


54 55 56
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
57 58
class TestMaxOp(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
59 60

    def setUp(self):
61
        self.op_type = "reduce_max"
62
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
63 64 65 66
        self.attrs = {'dim': [-1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }
67 68 69

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
70 71


72 73 74
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
75 76
class TestMinOp(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""
G
guosheng 已提交
77

78 79
    def setUp(self):
        self.op_type = "reduce_min"
80
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
W
whs 已提交
81 82 83 84
        self.attrs = {'dim': [2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
85

86 87
    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102
class TestProdOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_prod"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.outputs = {'Out': self.inputs['X'].prod(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


Z
zhoukunsheng 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class TestAllOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].all()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].all(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAllOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_all"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].all(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


class TestAnyOp(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.outputs = {'Out': self.inputs['X'].any()}
        self.attrs = {'reduce_all': True}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1]}
        self.outputs = {'Out': self.inputs['X'].any(axis=1)}

    def test_check_output(self):
        self.check_output()


class TestAnyOpWithKeepDim(OpTest):
    def setUp(self):
        self.op_type = "reduce_any"
        self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': np.expand_dims(
                self.inputs['X'].any(axis=1), axis=1)
        }

    def test_check_output(self):
        self.check_output()


Q
qiaolongfei 已提交
175
class Test1DReduce(OpTest):
G
guosheng 已提交
176
    def setUp(self):
177
        self.op_type = "reduce_sum"
Z
zhupengyang 已提交
178
        self.inputs = {'X': np.random.random(120).astype("float64")}
Q
qiaolongfei 已提交
179
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}
180 181 182

    def test_check_output(self):
        self.check_output()
G
guosheng 已提交
183

184 185
    def test_check_grad(self):
        self.check_grad(['X'], 'Out')
G
guosheng 已提交
186 187


Q
qiaolongfei 已提交
188
class Test2DReduce0(Test1DReduce):
G
guosheng 已提交
189
    def setUp(self):
190
        self.op_type = "reduce_sum"
Q
qiaolongfei 已提交
191 192
        self.attrs = {'dim': [0]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
193 194 195
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}


Q
qiaolongfei 已提交
196 197 198 199 200
class Test2DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((20, 10)).astype("float64")}
Q
qiaolongfei 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce0(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce1(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce2(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [-2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }


class Test3DReduce3(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.attrs = {'dim': [1, 2]}
        self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']))
        }
G
guosheng 已提交
244 245


Q
qiaolongfei 已提交
246 247 248 249
class TestKeepDimReduce(Test1DReduce):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
Q
qiaolongfei 已提交
250
        self.attrs = {'dim': [1], 'keep_dim': True}
Q
qiaolongfei 已提交
251 252 253 254 255 256 257
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=self.attrs['keep_dim'])
        }


class TestReduceAll(Test1DReduce):
258 259
    def setUp(self):
        self.op_type = "reduce_sum"
260
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
261 262 263 264
        self.attrs = {'reduce_all': True}
        self.outputs = {'Out': self.inputs['X'].sum()}


W
whs 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
## reduction in multi dims
class TestReduceMeanOpMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


280 281 282
@skip_check_grad_ci(
    reason="reduce_max is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
class TestReduceMaxOpMultiAxises(OpTest):
    """Remove Max with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_max"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1]}
        self.outputs = {
            'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


298 299 300
@skip_check_grad_ci(
    reason="reduce_min is discontinuous non-derivable function,"
    " its gradient check is not supported by unittest framework.")
W
whs 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
class TestReduceMinOpMultiAxises(OpTest):
    """Remove Min with subgradient from gradient check to confirm the success of CI."""

    def setUp(self):
        self.op_type = "reduce_min"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [1, 2]}
        self.outputs = {
            'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim']))
        }

    def test_check_output(self):
        self.check_output()


class TestKeepDimReduceSumMultiAxises(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")}
        self.attrs = {'dim': [-2, -1], 'keep_dim': True}
        self.outputs = {
            'Out':
            self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
class TestReduceSumWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((10, 1, 1)).astype("float64")}
        self.attrs = {'dim': [1, 2], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceSumWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((1, 1)).astype("float64")}
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
                                        keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithDimOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((10, 1, 1)).astype("float64")}
        self.attrs = {'dim': [1], 'keep_dim': False}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=False)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceMeanWithNumelOne(OpTest):
    def setUp(self):
        self.op_type = "reduce_mean"
        self.inputs = {'X': np.random.random((1, 1)).astype("float64")}
        self.attrs = {'dim': [1], 'keep_dim': True}
        self.outputs = {
            'Out': self.inputs['X'].mean(
                axis=tuple(self.attrs['dim']), keepdims=True)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random((1, 1, 1)).astype("float64")}
        self.attrs = {'reduce_all': True, 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum()}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


415 416 417 418 419 420 421 422 423 424 425 426 427 428
class Test1DReduceWithAxes1(OpTest):
    def setUp(self):
        self.op_type = "reduce_sum"
        self.inputs = {'X': np.random.random(1).astype("float64")}
        self.attrs = {'dim': [0], 'keep_dim': False}
        self.outputs = {'Out': self.inputs['X'].sum(axis=0)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


429
class TestReduceSumOpError(unittest.TestCase):
430 431 432 433 434 435 436 437 438 439 440
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_sum_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x1)
            # The input dtype of reduce_sum_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_sum, x2)


441
class TestReduceMeanOpError(unittest.TestCase):
442 443 444 445 446 447 448 449 450 451 452
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of reduce_mean_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x1)
            # The input dtype of reduce_mean_op  must be float32 or float64 or int32 or int64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.reduce_mean, x2)


G
guosheng 已提交
453 454
if __name__ == '__main__':
    unittest.main()