tensor.py 17.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
42
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
43 44
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
45 46


47 48
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
49
                     name=None,
50 51 52 53
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
54 55 56 57 58 59
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

60 61 62 63 64 65 66 67 68 69 70
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
71 72 73 74 75 76
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
77
    """
Q
Qiao Longfei 已提交
78
    helper = LayerHelper("create_parameter", **locals())
79
    if attr is None:
X
xuwei06 已提交
80
        attr = ParamAttr(name=name)
81 82 83 84
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


85 86 87 88 89 90 91
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
92 93
    Create a new variable in the global block(block 0).

94 95
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
96 97 98 99 100 101 102 103 104 105
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
106 107 108

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
109 110 111 112 113 114

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
115
    """
Q
Qiao Longfei 已提交
116 117 118 119
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
120 121
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
122 123 124
    return var


125
def cast(x, dtype):
Y
Yu Yang 已提交
126
    """
Y
Yibing Liu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
             
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
142 143 144 145 146 147 148 149 150 151 152 153
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


154
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
155
    """
156 157 158
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
159
    and returns that as the output.
160 161 162 163

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
164 165
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
166 167 168 169 170 171

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
172 173
        
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
174 175 176 177 178 179 180 181 182 183 184
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


185
def sums(input, out=None):
F
fengjiayi 已提交
186 187
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
188 189 190 191 192
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
193
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
194
                             Default: None
K
kavyasrinet 已提交
195 196

    Returns:
F
fengjiayi 已提交
197
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
198 199

    Examples:
F
fengjiayi 已提交
200
        .. code-block:: python
K
kavyasrinet 已提交
201 202 203 204 205 206

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
207 208
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
209
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


218
def assign(input, output):
219 220 221 222 223 224
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
225
        input(Variable|numpy.ndarray): The source variable
226 227 228 229 230 231 232
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
233

234 235 236 237
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
238
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
239 240
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
241
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
242 243
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
244
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
245
            value_name = "fp32_values"
246
            values = [float(v) for v in input.flat]
247
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
248
            value_name = "int32_values"
249
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
250 251
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
252 253 254
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
255 256 257 258 259 260 261

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
262
                value_name: values
X
xuwei06 已提交
263 264 265 266
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
267 268 269
    return output


Q
QI JUN 已提交
270
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
271
    """
272 273
    **fill_constant**

274 275
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
276

277
    The attribute `stop_gradient` of the created tensor is set to True.
278 279

    Args:
280
        shape(tuple|list|None): Shape of the output tensor.
281
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
282 283
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
284
        force_cpu(True|False): data should be on CPU if set true.
285 286

    Returns:
287
        Variable: The tensor variable storing the output.
288 289 290 291 292

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
293
    """
294

Y
Yu Yang 已提交
295 296 297 298 299 300 301
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
302 303 304 305
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
306
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
307
        })
Y
Yu Yang 已提交
308 309 310 311
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
312
@templatedoc()
Y
Yu Yang 已提交
313 314 315 316 317
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
318
                                  output_dim_idx=0):
319
    """
Y
yuyang18 已提交
320
    ${comment}
321 322 323

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
324 325 326
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

327
    Args:
Y
yuyang18 已提交
328
        input(${input_type}): ${input_comment}.
329

Y
yuyang18 已提交
330
        shape(${shape_type}): ${shape_comment}.
331

Y
yuyang18 已提交
332 333 334
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
335

Y
yuyang18 已提交
336 337 338 339 340
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
341
        ${out_comment}.
342
    """
Y
Yu Yang 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
360 361 362 363 364 365 366 367 368 369 370
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
371

S
sneaxiy 已提交
372 373
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
374

S
sneaxiy 已提交
375 376
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
377

S
sneaxiy 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
402

S
sneaxiy 已提交
403 404
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
405

S
sneaxiy 已提交
406 407
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
408

S
sneaxiy 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
422
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
423
    """
424 425 426 427 428 429 430 431 432
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
433
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
434 435 436 437 438 439 440 441

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
442 443 444 445
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
446
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
447
    """
448 449 450 451 452 453 454 455 456
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
457
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
458 459 460 461 462 463 464 465

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
466 467
    """
    return fill_constant(value=0.0, **locals())
468 469


F
fengjiayi 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
529 530
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
531
        file_path(str): The file path where variables will be saved.
532
        overwrite(bool): Whether or not cover the given file when it has already
533 534
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})