parallel_executor.cc 9.3 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
29

Y
Yang Yang 已提交
30
namespace paddle {
Y
Yu Yang 已提交
31 32
namespace framework {

Y
Yu Yang 已提交
33 34 35
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
36
      : places_(places) {}
Y
Yu Yang 已提交
37 38 39 40

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
41
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
44
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
45
#endif
C
chengduoZH 已提交
46 47
  bool own_local_scope_;
  bool use_cuda_;
Y
Yu Yang 已提交
48 49
};

50 51 52 53
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
54
ParallelExecutor::ParallelExecutor(
55
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
56
    const std::unordered_set<std::string> &params,
57 58
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
59
    Scope *scope, const std::vector<Scope *> &local_scopes,
60
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
61
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
62
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
63
  member_->global_scope_ = scope;
64
  member_->use_cuda_ = exec_strategy.use_cuda_;
Y
Yu Yang 已提交
65

66
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
67
  // Create local scopes
68
  if (local_scopes.empty()) {
C
chengduoZH 已提交
69
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
70 71
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
72
      member_->local_scopes_.emplace_back(&scope->NewScope());
73 74
    }
  } else {
C
chengduoZH 已提交
75
    member_->own_local_scope_ = false;
76 77
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
78
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
79
    }
Y
Yu Yang 已提交
80 81
  }

C
chengduoZH 已提交
82
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
83 84
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
85 86 87 88 89 90 91 92 93
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
94
#endif
C
chengduoZH 已提交
95 96 97
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
98
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
99
  }
Y
yuyang18 已提交
100 101 102 103 104 105 106 107 108 109
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
110

Y
yuyang18 已提交
111 112 113
  // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  details::SSAGraphBuilderFactory builder_factory(
Y
Yancey1989 已提交
114
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
115
      build_strategy);
C
chengduoZH 已提交
116
  if (member_->use_cuda_) {
Y
yuyang18 已提交
117
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
118 119 120
    builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get());
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
121
#endif
C
chengduoZH 已提交
122
  }
Y
yuyang18 已提交
123

F
fengjiayi 已提交
124
  builder_ = builder_factory.Create();
Y
Yu Yang 已提交
125
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
yuyang18 已提交
126
      exec_strategy, member_->local_scopes_, places,
127
      builder_->Build(main_program)));
Y
Yu Yang 已提交
128

Y
yuyang18 已提交
129 130 131
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
132 133 134
}

void ParallelExecutor::BCastParamsToGPUs(
135
    const std::unordered_set<std::string> &vars) const {
136 137
  // the the initializing bcast, all vars would be bcast from device(0),
  // otherwise
138
  // bcast from the specified device.
139
  bool initializing = builder_.get() == nullptr ? true : false;
Y
Yu Yang 已提交
140

141
  for (auto &var : vars) {
142 143
    int var_dev_id =
        builder_.get() == nullptr ? -1 : builder_->GetVarDeviceID(var);
144
    if (!initializing && var_dev_id == -1) continue;
145 146

    framework::Variable *main_var = nullptr;
147
    if (initializing) {
148 149 150 151 152
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
153
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
154 155 156 157 158 159
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
160
#ifdef PADDLE_WITH_CUDA
161
      std::vector<void *> buffers;
162 163 164 165 166
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
167

168 169
        if ((initializing && i == 0) ||
            (!initializing && static_cast<int>(i) == var_dev_id)) {
170 171
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
172
          auto local_scope = member_->local_scopes_[i];
173
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
174
          t->Resize(dims);
175
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
176
        }
177
        buffers.push_back(buffer);
178
      }
179

180 181 182 183 184 185
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
186 187 188 189 190 191 192 193 194 195
          if (initializing) {
            platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                         nccl_ctx.comm_, nccl_ctx.stream());
          } else {
            if (var_dev_id >= 0) {
              platform::dynload::ncclBcast(buffers[i], numel, data_type,
                                           var_dev_id, nccl_ctx.comm_,
                                           nccl_ctx.stream());
            }
          }
196
        }
197
        member_->nccl_ctxs_->WaitAll();
198
      }
199

C
chengduoZH 已提交
200 201 202
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
203 204 205 206 207 208 209 210
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
211
      }
Y
Stash  
Yu Yang 已提交
212 213
    }
  }
Y
Yu Yang 已提交
214
}
Y
Yu Yang 已提交
215

Y
Yu Yang 已提交
216 217
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
218
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
219 220 221
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
222
}
Y
Yu Yang 已提交
223

Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
243 244 245 246 247
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
248 249
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
250
      auto t =
Y
Yu Yang 已提交
251
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
252 253
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
254 255
    }
  }
256 257 258
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
X
Xin Pan 已提交
259 260
}

261
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
262
  if (member_->own_local_scope_) {
263 264 265 266 267 268
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
269
}  // namespace framework
Y
Yang Yang 已提交
270
}  // namespace paddle