transforms.py 40.8 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37 38
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = [
39 40 41 42 43
    "BaseTransform", "Compose", "Resize", "RandomResizedCrop", "CenterCrop",
    "RandomHorizontalFlip", "RandomVerticalFlip", "Transpose", "Normalize",
    "BrightnessTransform", "SaturationTransform", "ContrastTransform",
    "HueTransform", "ColorJitter", "RandomCrop", "Pad", "RandomRotation",
    "Grayscale", "ToTensor"
L
LielinJiang 已提交
44 45 46
]


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
        transforms (list): List of transforms to compose.

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

99 100
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self, transforms):
        self.transforms = transforms

114
    def __call__(self, data):
L
LielinJiang 已提交
115 116
        for f in self.transforms:
            try:
117
                data = f(data)
L
LielinJiang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


134 135 136
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
137

138 139 140 141 142 143 144 145 146
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
169 170 171 172 173
    Examples:
    
        .. code-block:: python

            import numpy as np
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
239 240 241

    """

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
275
            outputs.extend(inputs[len(self.keys):])
276 277 278 279 280 281

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
282

283 284
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
285

286 287
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
288

289 290
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
291

292 293
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
294

295 296 297 298

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
299 300 301 302 303 304 305 306 307 308
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
309 310 311 312

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
313
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))

            transform = T.ToTensor()

            tensor = transform(fake_img)

    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
351 352 353 354 355 356 357 358
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
374 375 376 377 378 379

    Examples:
    
        .. code-block:: python

            import numpy as np
380
            from PIL import Image
381
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
382 383 384

            transform = Resize(size=224)

385
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
386 387

            fake_img = transform(fake_img)
388
            print(fake_img.size)
L
LielinJiang 已提交
389 390
    """

391 392
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
393 394 395 396 397
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

398
    def _apply_image(self, img):
L
LielinJiang 已提交
399 400 401
        return F.resize(img, self.size, self.interpolation)


402
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
403 404 405 406 407 408
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
409
        size (int|list|tuple): Target size of output image, with (height, width) shape.
L
LielinJiang 已提交
410 411
        scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
427 428 429 430 431 432

    Examples:
    
        .. code-block:: python

            import numpy as np
433
            from PIL import Image
434
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
435 436 437

            transform = RandomResizedCrop(224)

438
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
439 440

            fake_img = transform(fake_img)
441 442
            print(fake_img.size)

L
LielinJiang 已提交
443 444 445
    """

    def __init__(self,
446
                 size,
L
LielinJiang 已提交
447 448
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
449 450 451 452 453
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
454
        else:
455
            self.size = size
L
LielinJiang 已提交
456 457 458 459 460 461
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

462 463
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
464 465 466 467 468 469 470 471 472 473 474
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
475 476 477
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
478 479 480 481 482 483 484 485 486

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
487 488
        else:
            # return whole image
L
LielinJiang 已提交
489 490
            w = width
            h = height
491 492 493
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
494

495 496
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
497

498
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
499 500 501
        return F.resize(cropped_img, self.size, self.interpolation)


502
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
503 504 505
    """Crops the given the input data at the center.

    Args:
506 507 508
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

L
LielinJiang 已提交
509 510 511 512 513
    Examples:
    
        .. code-block:: python

            import numpy as np
514
            from PIL import Image
515
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
516 517 518

            transform = CenterCrop(224)

519
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
520 521

            fake_img = transform(fake_img)
522
            print(fake_img.size)
L
LielinJiang 已提交
523 524
    """

525 526 527 528
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
529
        else:
530
            self.size = size
L
LielinJiang 已提交
531

532 533
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
534 535


536
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
537 538 539
    """Horizontally flip the input data randomly with a given probability.

    Args:
540 541
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
542 543 544 545 546 547

    Examples:
    
        .. code-block:: python

            import numpy as np
548
            from PIL import Image
549
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
550 551 552

            transform = RandomHorizontalFlip(224)

553
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
554 555

            fake_img = transform(fake_img)
556
            print(fake_img.size)
L
LielinJiang 已提交
557 558
    """

559 560
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
L
LielinJiang 已提交
561 562
        self.prob = prob

563 564 565
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
566 567 568
        return img


569
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
570 571 572
    """Vertically flip the input data randomly with a given probability.

    Args:
573 574
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
575 576 577 578 579 580

    Examples:
    
        .. code-block:: python

            import numpy as np
581
            from PIL import Image
582
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
583 584 585

            transform = RandomVerticalFlip(224)

586
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
587 588

            fake_img = transform(fake_img)
589 590
            print(fake_img.size)

L
LielinJiang 已提交
591 592
    """

593 594
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
L
LielinJiang 已提交
595 596
        self.prob = prob

597 598 599
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
600 601 602
        return img


603
class Normalize(BaseTransform):
L
LielinJiang 已提交
604 605 606 607 608 609 610 611
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (int|float|list): Sequence of means for each channel.
        std (int|float|list): Sequence of standard deviations for each channel.
612 613 614 615 616
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
617 618 619 620 621
    Examples:
    
        .. code-block:: python

            import numpy as np
622
            from PIL import Image
623
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
624

625 626 627
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
628

629
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
630 631 632

            fake_img = normalize(fake_img)
            print(fake_img.shape)
633
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
634 635 636
    
    """

637 638 639 640 641 642 643
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
644 645 646 647
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
648
            std = [std, std, std]
L
LielinJiang 已提交
649

650 651 652 653
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
654

655 656 657
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
658 659


660 661
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
662 663
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
664
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
665 666

    Args:
667 668 669
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
670 671 672 673 674
    Examples:
    
        .. code-block:: python

            import numpy as np
675 676
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
677

678
            transform = Transpose()
L
LielinJiang 已提交
679

680
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
681 682 683 684 685 686

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

687 688 689 690 691 692 693
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
694

695 696
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
697
        return img.transpose(self.order)
L
LielinJiang 已提交
698 699


700
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
701 702 703 704 705
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
706
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
707 708 709 710 711 712

    Examples:
    
        .. code-block:: python

            import numpy as np
713
            from PIL import Image
714
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
715 716 717

            transform = BrightnessTransform(0.4)

718
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
719 720

            fake_img = transform(fake_img)
721
            
L
LielinJiang 已提交
722 723
    """

724 725 726
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
727

728 729
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
730 731
            return img

732 733
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
734 735


736
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
737 738 739 740 741
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
742
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
743 744 745 746 747 748

    Examples:
    
        .. code-block:: python

            import numpy as np
749
            from PIL import Image
750
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
751 752 753

            transform = ContrastTransform(0.4)

754
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
755 756

            fake_img = transform(fake_img)
757

L
LielinJiang 已提交
758 759
    """

760 761
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
762 763
        if value < 0:
            raise ValueError("contrast value should be non-negative")
764
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
765

766 767
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
768 769
            return img

770 771
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
772 773


774
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
775 776 777 778 779
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
780
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
781 782 783 784 785 786

    Examples:
    
        .. code-block:: python

            import numpy as np
787
            from PIL import Image
788
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
789 790 791

            transform = SaturationTransform(0.4)

792
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
793 794
        
            fake_img = transform(fake_img)
795

L
LielinJiang 已提交
796 797
    """

798 799 800
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
801

802 803
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
804 805
            return img

806 807
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
808

L
LielinJiang 已提交
809

810
class HueTransform(BaseTransform):
L
LielinJiang 已提交
811 812 813 814 815
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
816
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
817 818 819 820 821 822

    Examples:
    
        .. code-block:: python

            import numpy as np
823
            from PIL import Image
824
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
825 826 827

            transform = HueTransform(0.4)

828
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
829 830

            fake_img = transform(fake_img)
831

L
LielinJiang 已提交
832 833
    """

834 835 836 837
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
838

839 840
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
841 842
            return img

843 844
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
845 846


847
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
848 849 850 851
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
        brightness: How much to jitter brightness.
L
LielinJiang 已提交
852
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
L
LielinJiang 已提交
853
        contrast: How much to jitter contrast.
L
LielinJiang 已提交
854
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
L
LielinJiang 已提交
855
        saturation: How much to jitter saturation.
L
LielinJiang 已提交
856
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
L
LielinJiang 已提交
857
        hue: How much to jitter hue.
L
LielinJiang 已提交
858
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
859
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
860 861 862 863 864 865

    Examples:
    
        .. code-block:: python

            import numpy as np
866
            from PIL import Image
867
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
868

869
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
870

871
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
872 873

            fake_img = transform(fake_img)
874

L
LielinJiang 已提交
875 876
    """

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
894
        transforms = []
895 896 897 898 899 900 901 902 903 904 905 906

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
907 908

        random.shuffle(transforms)
909
        transform = Compose(transforms)
L
LielinJiang 已提交
910

911
        return transform
L
LielinJiang 已提交
912

913 914 915 916
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
917

918 919 920 921 922 923 924 925 926
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
927 928 929 930 931 932 933 934 935 936 937
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
938 939
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
940 941 942 943 944
    Examples:
    
        .. code-block:: python

            import numpy as np
945
            from PIL import Image
946
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
947 948 949

            transform = RandomCrop(224)

950
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
951 952

            fake_img = transform(fake_img)
953
            print(fake_img.size)
L
LielinJiang 已提交
954 955
    """

956 957 958 959 960 961 962 963
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
964 965 966 967 968 969
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
970 971
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
972

973
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
974 975 976
        """Get parameters for ``crop`` for a random crop.

        Args:
977
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
978 979 980 981 982
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
983
        w, h = _get_image_size(img)
L
LielinJiang 已提交
984 985 986 987
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

988 989
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
990 991
        return i, j, th, tw

992
    def _apply_image(self, img):
L
LielinJiang 已提交
993 994
        """
        Args:
995
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
996

997 998
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
999
        """
1000 1001 1002 1003
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1004 1005

        # pad the width if needed
1006 1007 1008
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1009
        # pad the height if needed
1010 1011 1012
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1013

1014
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1015

1016
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1017 1018


1019
class Pad(BaseTransform):
L
LielinJiang 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1040 1041
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1042 1043 1044 1045 1046
    Examples:
    
        .. code-block:: python

            import numpy as np
1047
            from PIL import Image
1048
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1049 1050 1051

            transform = Pad(2)

1052
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1053 1054

            fake_img = transform(fake_img)
1055
            print(fake_img.size)
L
LielinJiang 已提交
1056 1057
    """

1058
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1059 1060 1061
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1062 1063 1064 1065 1066 1067 1068

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1069 1070 1071 1072
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1073
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1074 1075 1076 1077
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1078
    def _apply_image(self, img):
L
LielinJiang 已提交
1079 1080
        """
        Args:
1081 1082
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1083
        Returns:
1084
            PIL Image: Padded image.
L
LielinJiang 已提交
1085 1086 1087 1088
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1089
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1090 1091 1092 1093 1094 1095
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'.
        resample (int|str, optional): An optional resampling filter. If omitted, or if the 
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1107 1108 1109 1110 1111 1112 1113
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1114 1115
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1116 1117 1118 1119 1120
    Examples:
    
        .. code-block:: python

            import numpy as np
1121 1122
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1123

1124
            transform = RandomRotation(90)
L
LielinJiang 已提交
1125

1126
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1127 1128

            fake_img = transform(fake_img)
1129
            print(fake_img.size)
L
LielinJiang 已提交
1130 1131
    """

1132 1133 1134 1135 1136 1137 1138
    def __init__(self,
                 degrees,
                 resample=False,
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1150 1151
        super(RandomRotation, self).__init__(keys)
        self.resample = resample
L
LielinJiang 已提交
1152 1153
        self.expand = expand
        self.center = center
1154
        self.fill = fill
L
LielinJiang 已提交
1155

1156
    def _get_param(self, degrees):
L
LielinJiang 已提交
1157 1158 1159 1160
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1161
    def _apply_image(self, img):
L
LielinJiang 已提交
1162
        """
1163 1164 1165
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1166
        Returns:
1167
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1168 1169
        """

1170
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1171

1172 1173
        return F.rotate(img, angle, self.resample, self.expand, self.center,
                        self.fill)
L
LielinJiang 已提交
1174 1175


1176
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1177 1178 1179
    """Converts image to grayscale.

    Args:
1180 1181 1182
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
        
L
LielinJiang 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np
1193
            from PIL import Image
1194
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1195 1196 1197

            transform = Grayscale()

1198
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1199 1200

            fake_img = transform(fake_img)
1201
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1202 1203
    """

1204 1205 1206
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1207

1208
    def _apply_image(self, img):
L
LielinJiang 已提交
1209 1210
        """
        Args:
1211 1212
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1213
        Returns:
1214
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1215
        """
1216
        return F.to_grayscale(img, self.num_output_channels)