dense_table_test.cc 6.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <ThreadPool.h>
16
#include <vector>
T
tangwei12 已提交
17 18
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
19
#include "paddle/fluid/distributed/ps/table/common_dense_table.h"
T
tangwei12 已提交
20 21 22 23 24

namespace paddle {
namespace distributed {

// CommonDenseTable + Adam
25 26
class Table;

T
tangwei12 已提交
27 28 29 30 31 32 33 34 35 36 37 38
TEST(CommonDenseTable, Adam) {
  int fea_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("CommonDenseTable");
  FsClientParameter fs_config;
  Table *table = new CommonDenseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  // set adam optimize config
39
  common_config->set_name("adam_d2sum");
T
tangwei12 已提交
40 41 42 43 44
  common_config->set_table_name("adam_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("gaussian_random&0&0.0&1.0");
45 46 47 48
  common_config->add_params("D2Sum");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
  common_config->add_params("G2Sum");
T
tangwei12 已提交
49 50
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
51
  common_config->add_params("Moment");
T
tangwei12 已提交
52 53
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
54
  common_config->add_params("MomentDecayRate");
T
tangwei12 已提交
55
  common_config->add_dims(1);
56 57
  common_config->add_initializers("fill_constant&0.99");
  common_config->add_params("AdaDecayRate");
T
tangwei12 已提交
58
  common_config->add_dims(1);
59 60 61 62 63 64 65
  common_config->add_initializers("fill_constant&0.9999");
  common_config->add_params("AdaEpsilon");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0e-8");
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&5e-6");
Z
zhaocaibei123 已提交
66
  auto ret = table->Initialize(table_config, fs_config);
T
tangwei12 已提交
67 68 69 70 71
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<float> init_values;
  init_values.resize(fea_dim);
Z
zhaocaibei123 已提交
72
  table->PullDense(init_values.data(), fea_dim);
T
tangwei12 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  // push gradient
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_gradient_values.resize(trainers);
  float start = 10.0;
  for (int i = 0; i < trainers; i++) {
    for (int k = 0; k < fea_dim; k++) {
      trainer_gradient_values[i].push_back(start);
      start += 0.1;
    }
  }

  // for adam
  for (int i = 0; i < trainers; i++) {
    auto &push_values = trainer_gradient_values[i];
Z
zhaocaibei123 已提交
88
    table->PushDense(push_values.data(), push_values.size());
T
tangwei12 已提交
89 90 91 92
  }

  std::vector<float> pull_values;
  pull_values.resize(fea_dim);
Z
zhaocaibei123 已提交
93
  table->PullDense(pull_values.data(), fea_dim);
T
tangwei12 已提交
94

95 96 97 98 99
  float mom_rate = 0.99;
  float decay_rate = 0.9999;
  float epsilon = 1.0e-8;
  float lr = 5e-6;
  std::vector<float> d2sum, g2sum, mom, param;
T
tangwei12 已提交
100
  for (int i = 0; i < fea_dim; i++) {
101 102 103
    mom.push_back(0.0);
    d2sum.push_back(0.0);
    g2sum.push_back(0.0);
T
tangwei12 已提交
104 105 106 107 108
    param.push_back(init_values[i]);
  }

  for (int i = 0; i < trainers; i++) {
    for (int j = 0; j < fea_dim; j++) {
109 110 111 112 113 114 115 116 117
      d2sum[j] = d2sum[j] * decay_rate + 1;
      g2sum[j] = g2sum[j] * decay_rate +
                 trainer_gradient_values[i][j] * trainer_gradient_values[i][j];
      float scale = d2sum[j] * epsilon;
      scale = (scale + d2sum[j]) / (scale + g2sum[j]);
      scale = sqrt(scale);
      mom[j] = (mom[j] - trainer_gradient_values[i][j]) * mom_rate +
               trainer_gradient_values[i][j];
      param[j] = param[j] - lr * scale * mom[j];
T
tangwei12 已提交
118 119 120
    }
  }
  for (int j = 0; j < fea_dim; j++) {
Z
zhaocaibei123 已提交
121
    VLOG(0) << param[j] << " " << pull_values[j];
T
tangwei12 已提交
122
    ASSERT_TRUE(abs(param[j] - pull_values[j]) < 1e-5);
T
tangwei12 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  }
}

// CommonDenseTable + Adam
TEST(CommonDenseTable, SGD) {
  int fea_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("CommonDenseTable");
  FsClientParameter fs_config;
  Table *table = new CommonDenseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  common_config->set_name("sgd");
  common_config->set_table_name("sgd_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("gaussian_random&0&0.0&1.0");
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");
Z
zhaocaibei123 已提交
147
  auto ret = table->Initialize(table_config, fs_config);
T
tangwei12 已提交
148 149 150 151 152
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<float> init_values;
  init_values.resize(fea_dim);
Z
zhaocaibei123 已提交
153
  table->PullDense(init_values.data(), fea_dim);
T
tangwei12 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

  std::vector<float> total_gradients;
  total_gradients.resize(fea_dim);
  memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size());
  // push gradient
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_gradient_values.resize(trainers);
  float start = 10.0;
  for (int i = 0; i < trainers; i++) {
    for (int k = 0; k < fea_dim; k++) {
      trainer_gradient_values[i].push_back(start);
      total_gradients[k] += start;
      start += 0.1;
    }
  }

  std::shared_ptr<::ThreadPool> pool_ =
      std::make_shared<::ThreadPool>(trainers);
  std::vector<std::future<void>> task_status;
  for (int i = 0; i < trainers; i++) {
    auto &push_values = trainer_gradient_values[i];
    auto task = [table, &push_values] {
Z
zhaocaibei123 已提交
176
      table->PushDense(push_values.data(), push_values.size());
T
tangwei12 已提交
177 178 179 180 181 182 183 184 185
    };
    task_status.push_back(pool_->enqueue(std::move(task)));
  }
  for (auto &status : task_status) {
    status.wait();
  }

  std::vector<float> pull_values;
  pull_values.resize(fea_dim);
Z
zhaocaibei123 已提交
186
  table->PullDense(pull_values.data(), fea_dim);
T
tangwei12 已提交
187 188 189 190 191 192 193 194
  for (int j = 0; j < fea_dim; j++) {
    auto update_val = init_values[j] - 1.0 * total_gradients[j];
    ASSERT_TRUE(abs(update_val - pull_values[j]) < 1e-5);
  }
}

}  // namespace distributed
}  // namespace paddle