dense_table_test.cc 6.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <ThreadPool.h>
16
#include <vector>
T
tangwei12 已提交
17 18 19 20 21 22 23 24
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/table/common_dense_table.h"

namespace paddle {
namespace distributed {

// CommonDenseTable + Adam
25 26
class Table;

T
tangwei12 已提交
27 28 29 30 31 32 33 34 35 36 37 38
TEST(CommonDenseTable, Adam) {
  int fea_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("CommonDenseTable");
  FsClientParameter fs_config;
  Table *table = new CommonDenseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  // set adam optimize config
39
  common_config->set_name("adam_d2sum");
T
tangwei12 已提交
40 41 42 43 44
  common_config->set_table_name("adam_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("gaussian_random&0&0.0&1.0");
45 46 47 48
  common_config->add_params("D2Sum");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
  common_config->add_params("G2Sum");
T
tangwei12 已提交
49 50
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
51
  common_config->add_params("Moment");
T
tangwei12 已提交
52 53
  common_config->add_dims(fea_dim);
  common_config->add_initializers("fill_constant&0.0");
54
  common_config->add_params("MomentDecayRate");
T
tangwei12 已提交
55
  common_config->add_dims(1);
56 57
  common_config->add_initializers("fill_constant&0.99");
  common_config->add_params("AdaDecayRate");
T
tangwei12 已提交
58
  common_config->add_dims(1);
59 60 61 62 63 64 65
  common_config->add_initializers("fill_constant&0.9999");
  common_config->add_params("AdaEpsilon");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0e-8");
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&5e-6");
T
tangwei12 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  auto ret = table->initialize(table_config, fs_config);
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<float> init_values;
  init_values.resize(fea_dim);
  table->pull_dense(init_values.data(), fea_dim);

  // push gradient
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_gradient_values.resize(trainers);
  float start = 10.0;
  for (int i = 0; i < trainers; i++) {
    for (int k = 0; k < fea_dim; k++) {
      trainer_gradient_values[i].push_back(start);
      start += 0.1;
    }
  }

  // for adam
  for (int i = 0; i < trainers; i++) {
    auto &push_values = trainer_gradient_values[i];
    table->push_dense(push_values.data(), push_values.size());
  }

  std::vector<float> pull_values;
  pull_values.resize(fea_dim);
  table->pull_dense(pull_values.data(), fea_dim);

95 96 97 98 99
  float mom_rate = 0.99;
  float decay_rate = 0.9999;
  float epsilon = 1.0e-8;
  float lr = 5e-6;
  std::vector<float> d2sum, g2sum, mom, param;
T
tangwei12 已提交
100
  for (int i = 0; i < fea_dim; i++) {
101 102 103
    mom.push_back(0.0);
    d2sum.push_back(0.0);
    g2sum.push_back(0.0);
T
tangwei12 已提交
104 105 106 107 108
    param.push_back(init_values[i]);
  }

  for (int i = 0; i < trainers; i++) {
    for (int j = 0; j < fea_dim; j++) {
109 110 111 112 113 114 115 116 117
      d2sum[j] = d2sum[j] * decay_rate + 1;
      g2sum[j] = g2sum[j] * decay_rate +
                 trainer_gradient_values[i][j] * trainer_gradient_values[i][j];
      float scale = d2sum[j] * epsilon;
      scale = (scale + d2sum[j]) / (scale + g2sum[j]);
      scale = sqrt(scale);
      mom[j] = (mom[j] - trainer_gradient_values[i][j]) * mom_rate +
               trainer_gradient_values[i][j];
      param[j] = param[j] - lr * scale * mom[j];
T
tangwei12 已提交
118 119 120
    }
  }
  for (int j = 0; j < fea_dim; j++) {
T
tangwei12 已提交
121
    ASSERT_TRUE(abs(param[j] - pull_values[j]) < 1e-5);
T
tangwei12 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  }
}

// CommonDenseTable + Adam
TEST(CommonDenseTable, SGD) {
  int fea_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("CommonDenseTable");
  FsClientParameter fs_config;
  Table *table = new CommonDenseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  common_config->set_name("sgd");
  common_config->set_table_name("sgd_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(fea_dim);
  common_config->add_initializers("gaussian_random&0&0.0&1.0");
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");
  auto ret = table->initialize(table_config, fs_config);
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<float> init_values;
  init_values.resize(fea_dim);
  table->pull_dense(init_values.data(), fea_dim);

  std::vector<float> total_gradients;
  total_gradients.resize(fea_dim);
  memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size());
  // push gradient
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_gradient_values.resize(trainers);
  float start = 10.0;
  for (int i = 0; i < trainers; i++) {
    for (int k = 0; k < fea_dim; k++) {
      trainer_gradient_values[i].push_back(start);
      total_gradients[k] += start;
      start += 0.1;
    }
  }

  std::shared_ptr<::ThreadPool> pool_ =
      std::make_shared<::ThreadPool>(trainers);
  std::vector<std::future<void>> task_status;
  for (int i = 0; i < trainers; i++) {
    auto &push_values = trainer_gradient_values[i];
    auto task = [table, &push_values] {
      table->push_dense(push_values.data(), push_values.size());
    };
    task_status.push_back(pool_->enqueue(std::move(task)));
  }
  for (auto &status : task_status) {
    status.wait();
  }

  std::vector<float> pull_values;
  pull_values.resize(fea_dim);
  table->pull_dense(pull_values.data(), fea_dim);
  for (int j = 0; j < fea_dim; j++) {
    auto update_val = init_values[j] - 1.0 * total_gradients[j];
    ASSERT_TRUE(abs(update_val - pull_values[j]) < 1e-5);
  }
}

}  // namespace distributed
}  // namespace paddle