conv_cudnn_op.cu 58.1 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
17

L
liym27 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
22 23 24
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
L
liym27 已提交
25
#include "paddle/fluid/operators/conv_cudnn_helper.h"
26
#endif
L
liym27 已提交
27
#include "paddle/fluid/operators/conv_op.h"
28
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

46 47 48 49
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
50 51 52 53 54
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
58 59 60 61 62 63 64 65
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
66

L
liym27 已提交
67 68
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
69 70 71 72 73 74
    bool deterministic = FLAGS_cudnn_deterministic;
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));
L
liym27 已提交
75 76 77 78 79 80

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

81 82
    auto dtype = platform::CudnnDataType<T>::type;

83 84 85 86
#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
87 88 89 90 91 92 93 94
    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
95
#endif
96 97 98 99
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
100 101 102
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
103
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
104
    T* output_data = nullptr;
105 106
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
107 108 109 110 111 112 113 114 115
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
116 117 118 119 120 121 122 123 124 125 126
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
127 128 129 130 131
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
132
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
133
    framework::DDim in_data_dims;
134 135 136 137 138 139 140 141 142 143 144
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
145 146 147 148 149 150

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
151
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
152 153 154 155 156 157 158

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
159 160 161 162 163 164 165

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
166 167 168 169 170 171

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
172 173 174 175 176 177 178 179 180 181 182 183 184 185
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
200
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
201 202 203 204
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
205
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
206 207 208 209
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
210 211
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
212 213 214
      }

    } else {
215
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
216 217 218 219 220 221 222 223 224 225 226 227
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
228
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
229 230

    // ------------------- cudnn descriptors ---------------------
231 232 233 234 235 236 237
    ConvArgs args{&transformed_input,
                  &transformed_filter_channel,
                  &transformed_output,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
L
liym27 已提交
238 239 240

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
241 242 243 244 245
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
246 247 248 249
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
250 251

#ifdef PADDLE_WITH_HIP
252
    // MIOPEN need to set groups in cdesc in miopen_desc.h
253 254 255
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), groups);
#else
A
AshburnLee 已提交
256 257
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn());
258
#endif
L
liym27 已提交
259

260
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
261 262 263
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
264 265 266
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
                                                         groups));
L
liym27 已提交
267
    groups = 1;
268 269 270 271
#endif
#ifdef PADDLE_WITH_HIP
    // MIOPEN do not set groups in wdesc after set groups in cdesc
    groups = 1;
L
liym27 已提交
272
#endif
273 274 275
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
276 277
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
278 279 280 281 282 283 284 285 286 287 288 289

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
290 291 292

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
293
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
294 295
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
296 297 298 299
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t algo{};
    using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
300 301
    workspace_size = search::GetWorkspaceSize(args);
    algo = search::Find<T>(args, exhaustive_search, false, workspace_size, ctx);
302
#else
L
liym27 已提交
303 304
    cudnnConvolutionFwdAlgo_t algo{};
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
305
    algo = search::Find<T>(args, exhaustive_search, false, ctx);
L
liym27 已提交
306
    workspace_size = search::GetWorkspaceSize(args, algo);
307
#endif
L
liym27 已提交
308

309
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
310 311 312 313 314 315 316 317 318
    // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
    // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
    if (ctx.Attr<int>("groups") > 1) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
    }
#endif

L
liym27 已提交
319
    // ------------------- cudnn conv forward ---------------------
320
    ScalingParamType<T> alpha = 1.0f;
321 322
    ScalingParamType<T> beta = 0.0f;

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
// NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
// ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
// VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args.idesc.desc(), input_data,
                  args.wdesc.desc(), filter_data, args.cdesc.desc(), algo,
                  &beta, args.odesc.desc(), output_data, workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
L
liym27 已提交
339 340 341
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
342 343 344 345 346 347 348
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
349 350 351
          },
          workspace_size);
    }
352
#endif
L
liym27 已提交
353

354
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
355 356 357 358 359 360 361 362 363 364 365
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
366 367 368
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
387

L
liym27 已提交
388 389 390
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
391 392 393 394 395 396
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
397 398 399
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

400
    auto dtype = platform::CudnnDataType<T>::type;
401 402 403 404 405

#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
406 407 408 409
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
410
#endif
411 412 413 414
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
415 416 417 418
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
419 420
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
421

422 423 424
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
438 439 440 441 442 443
        // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
        // the data of input_grad to transformed_input_grad_channel.
        if (ctx.Attr<bool>("use_addto")) {
          TransToChannelFirst<platform::CUDADeviceContext, T>(
              ctx, input_grad, &transformed_input_grad_channel);
        }
L
liym27 已提交
444 445
      }
    } else {
446 447
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
448 449 450 451 452
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
471 472
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
473
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
474
    framework::DDim in_data_dims;
475 476 477 478 479 480 481 482 483 484
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
485 486 487 488 489 490 491
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
492
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
493 494 495 496 497 498 499 500 501 502
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
503 504 505 506 507 508
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
509 510 511 512

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
513 514 515 516 517 518 519 520 521 522 523 524 525 526
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
549
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
550 551 552 553
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
554
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
555 556 557 558
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
559 560
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
580
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
581 582 583 584 585
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
586
                   &transformed_filter_channel,
L
liym27 已提交
587 588 589
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
590 591
                   dilations,
                   dtype};
L
liym27 已提交
592
    ConvArgs args2{&transformed_input,
593
                   &transformed_filter_grad_channel,
L
liym27 已提交
594 595 596
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
597 598
                   dilations,
                   dtype};
L
liym27 已提交
599 600

    auto handle = dev_ctx.cudnn_handle();
601 602 603 604 605
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
606 607 608 609 610 611
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
612 613 614 615 616 617 618 619 620 621 622
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
623 624 625

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
626
    int group_offset_filter = transformed_filter_channel.numel() / groups;
627 628 629 630 631 632 633
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
634 635 636 637
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
638
#endif
L
liym27 已提交
639
    size_t workspace_size = 0;
640 641
    int iwo_groups = groups;
    int c_groups = 1;
L
liym27 已提交
642

643
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
644 645 646 647 648 649 650 651 652 653
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
654 655 656
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
657 658
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
L
liym27 已提交
659

660 661
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
662 663 664 665
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo = search1::Find<T>(args1, exhaustive_search, deterministic,
                                   workspace_size, ctx);
666
#else
L
liym27 已提交
667 668
      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
669
          search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
L
liym27 已提交
670 671
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
672
#endif
L
liym27 已提交
673 674 675 676
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
677
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
678
      args2.handle = handle;
679 680 681 682
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
683 684
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
685 686
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
687 688 689 690
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo = search2::Find<T>(args2, exhaustive_search, deterministic,
                                     workspace_size, ctx);
691
#else
L
liym27 已提交
692 693
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
694
          search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
L
liym27 已提交
695 696
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
697
#endif
L
liym27 已提交
698 699 700
    }

    // ------------------- cudnn conv backward data ---------------------
701
    ScalingParamType<T> alpha = 1.0f;
R
ronnywang 已提交
702 703 704 705
#ifdef PADDLE_WITH_HIP
    // MIOPEN ONLY support beta to be 0.0f
    ScalingParamType<T> beta = 0.0f;
#else
706
    ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
R
ronnywang 已提交
707
#endif
708 709
    VLOG(4) << "Conv_grad: use_addto = " << ctx.Attr<bool>("use_addto");

L
liym27 已提交
710
    if (input_grad) {
711 712
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
713
#ifdef PADDLE_WITH_HIP
R
ronnywang 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
      if (ctx.Attr<bool>("use_addto")) {
        Tensor temp_tensor(transformed_input_grad.type());
        temp_tensor.Resize(transformed_input_grad.dims());
        T* temp_tensor_data = temp_tensor.mutable_data<T>(ctx.GetPlace());
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(), temp_tensor_data,
                      cudnn_workspace_ptr, workspace_size));
            },
            workspace_size);
        PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenOpTensor(
            handle, miopenTensorOpAdd, &alpha, args1.idesc.desc(),
            transformed_input_grad_data, &alpha, args1.idesc.desc(),
            temp_tensor_data, &beta, args1.idesc.desc(),
            transformed_input_grad_data));
      } else {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(), output_grad_data,
                      args1.wdesc.desc(), filter_data, args1.cdesc.desc(),
                      data_algo, &beta, args1.idesc.desc(),
                      transformed_input_grad_data, cudnn_workspace_ptr,
                      workspace_size));
            },
            workspace_size);
      }

747
#else
748
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
749 750
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
751 752 753 754 755 756 757 758
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
759 760 761
            },
            workspace_size);
      }
762
#endif
W
wangchaochaohu 已提交
763 764 765
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
766

W
wangchaochaohu 已提交
767 768 769 770
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
771

W
wangchaochaohu 已提交
772 773
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
774
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
775 776 777
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
778
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
779 780 781
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
782 783
      }

784
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
785 786 787 788
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
789 790 791

    // filter_grad do not use inplace addto.
    ScalingParamType<T> beta_filter = 0.0f;
L
liym27 已提交
792 793
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
794
// Because beta is zero, it is unnecessary to reset filter_grad.
795
#ifdef PADDLE_WITH_HIP
796 797 798 799 800 801 802 803 804 805
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args2.odesc.desc(), output_grad_data,
                    args2.idesc.desc(), input_data, args2.cdesc.desc(),
                    filter_algo, &beta, args2.wdesc.desc(), filter_grad_data,
                    cudnn_workspace_ptr, workspace_size));
          },
          workspace_size);
806
#else
807
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
808 809
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
810 811 812 813 814 815
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
816
                      workspace_size, &beta_filter, args2.wdesc.desc(),
817
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
818 819 820
            },
            workspace_size);
      }
821
#endif
822 823 824 825 826

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
843 844 845
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
846 847 848 849 850 851 852 853 854 855 856
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
857 858
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
879

L
liym27 已提交
880 881 882
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
883 884 885 886 887 888
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
889 890 891 892 893 894 895 896 897
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
898
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
914 915 916 917 918 919
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
934 935 936
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
956
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
989 990 991 992 993
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
1005
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
1006
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1007 1008 1009 1010 1011
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1012 1013
        } break;
        case 5: {
1014
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
1015
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
1016 1017 1018 1019 1020
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
1021 1022
        } break;
        default:
1023 1024
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
1025 1026 1027 1028
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
1029 1030 1031
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
1051
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
1052 1053
    iwo_group = 1;
    c_group = groups;
1054
    groups = 1;
L
liym27 已提交
1055 1056 1057 1058 1059
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    ConvArgs args1{&transformed_ddX,
                   W,
                   &transformed_ddO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{
        &transformed_X, ddW,  &transformed_ddO_channel, strides, padding_common,
        dilations,      dtype};
    ConvArgs args3{&transformed_ddX,
                   dW,
                   &transformed_dO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dX, ddW,  &transformed_dO_channel, strides, padding_common,
        dilations,       dtype};
L
liym27 已提交
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t fwd_algo1 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t fwd_algo2 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
1091 1092 1093 1094 1095 1096 1097 1098
    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
1099
#endif
L
liym27 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1115 1116
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1117

1118 1119
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1120 1121 1122
        workspace_size = search1::GetWorkspaceSize(args1);
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false,
                                     workspace_size, ctx);
1123
#else
L
liym27 已提交
1124
        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1125
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
L
liym27 已提交
1126
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
1127
#endif
L
liym27 已提交
1128 1129 1130 1131 1132 1133 1134 1135
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1136 1137
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1138

1139 1140
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1141 1142 1143 1144
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false,
                                     workspace_size, ctx);
1145
#else
L
liym27 已提交
1146
        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1147
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
L
liym27 已提交
1148 1149
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
1150
#endif
L
liym27 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1160 1161
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1162

1163 1164
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
1165 1166 1167 1168
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo = search3::Find<T>(args3, exhaustive_search, deterministic,
                                     workspace_size, ctx);
1169
#else
L
liym27 已提交
1170 1171
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
1172
          search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1173 1174
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1175
#endif
L
liym27 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1185 1186
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1187

1188 1189
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
1190 1191 1192 1193
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo = search4::Find<T>(args4, exhaustive_search, deterministic,
                                   workspace_size, ctx);
1194
#else
L
liym27 已提交
1195 1196
      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
1197
          search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1198 1199
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1200
#endif
L
liym27 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

1215 1216 1217 1218 1219 1220 1221
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
    // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
    // 0.0f;
    // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
L
liym27 已提交
1222 1223 1224 1225 1226
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
1227
#ifdef PADDLE_WITH_HIP
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args1.idesc.desc(), ddx,
                      args1.wdesc.desc(), w, args1.cdesc.desc(), fwd_algo1,
                      &beta, args1.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1238
#else
1239
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1240 1241
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1242 1243 1244 1245 1246 1247 1248 1249
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1250 1251 1252
              },
              workspace_size);
        }
1253
#endif
L
liym27 已提交
1254 1255
      }
      if (ddW) {
1256
#ifdef PADDLE_WITH_HIP
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        // MIOPEN ONLY support beta to be 0.0f
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args2.idesc.desc(), x, args2.wdesc.desc(),
                      ddw, args2.cdesc.desc(), fwd_algo2, &beta,
                      args2.odesc.desc(), transformed_ddy_channel,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
1268
#else
1269
        for (int i = 0; i < groups; i++) {
L
liym27 已提交
1270 1271
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1272 1273 1274 1275 1276 1277 1278 1279
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1280 1281 1282
              },
              workspace_size);
        }
1283
#endif
L
liym27 已提交
1284 1285 1286 1287 1288 1289
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1290
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1291 1292
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
1293
#ifdef PADDLE_WITH_HIP
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardWeights(
                    handle, &alpha, args3.odesc.desc(), transformed_dy_channel,
                    args3.idesc.desc(), ddx, args3.cdesc.desc(), filter_algo,
                    &beta, args3.wdesc.desc(), dw, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1304
#else
1305
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1306 1307
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1308 1309 1310 1311 1312 1313 1314 1315
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1316 1317 1318
            },
            workspace_size);
      }
1319
#endif
L
liym27 已提交
1320 1321 1322 1323
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
1324
#ifdef PADDLE_WITH_HIP
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
      wkspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenConvolutionBackwardData(
                    handle, &alpha, args4.odesc.desc(), transformed_dy_channel,
                    args4.wdesc.desc(), ddw, args4.cdesc.desc(), data_algo,
                    &beta, args4.idesc.desc(), transformed_dx, workspace_ptr,
                    workspace_size));
          },
          workspace_size);
1335
#else
1336
      for (int i = 0; i < groups; i++) {
L
liym27 已提交
1337 1338
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1339 1340 1341 1342 1343 1344 1345 1346
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1347 1348 1349
            },
            workspace_size);
      }
1350
#endif
L
liym27 已提交
1351

W
wangchaochaohu 已提交
1352 1353 1354 1355
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1356

W
wangchaochaohu 已提交
1357 1358 1359 1360 1361
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1362
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1363 1364
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1365
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1366 1367
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1393 1394 1395 1396 1397 1398 1399 1400
// ROCM has limit thread in depthwise_conv.cu and willl result in accuracy issue
// Use depthwise_conv2d in MIOPEN to resolve this issue
REGISTER_OP_KERNEL(depthwise_conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(depthwise_conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
#else
L
liym27 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

1430 1431 1432 1433 1434 1435
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

L
liym27 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1448
#endif