conv_cudnn_op.cu 44.9 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_cudnn_helper.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/operators/conv_op.h"
24
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

43 44 45 46
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      "It must use CUDAPlace.");
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto dtype = platform::CudnnDataType<T>::type;

    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
89 90 91
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
92
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
93
    T* output_data = nullptr;
94 95
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
96 97 98 99 100 101 102 103 104
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
105 106 107 108 109 110 111 112 113 114 115
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
116 117 118 119 120
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
121
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
122
    framework::DDim in_data_dims;
123 124 125 126 127 128 129 130 131 132 133
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
134 135 136 137 138 139

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
140
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
141 142 143 144 145 146 147

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
148 149 150 151 152 153 154

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
155 156 157 158 159 160

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
161 162 163 164 165 166 167 168 169 170 171 172 173 174
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
189
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
190 191 192 193
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
194
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
195 196 197 198 199 200 201 202
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
          PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
      }

    } else {
203
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
204 205 206 207 208 209 210 211 212 213 214 215
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
216
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
217 218

    // ------------------- cudnn descriptors ---------------------
219 220 221
    ConvArgs args{&transformed_input,  &transformed_filter_channel,
                  &transformed_output, strides,
                  padding_common,      dilations};
L
liym27 已提交
222 223 224

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
225 226 227 228 229
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
230 231 232 233 234 235 236 237 238 239
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
    args.cdesc.set(dtype, padding_common, strides, dilations);

#if CUDNN_VERSION_MIN(7, 0, 1)
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
240 241 242
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
                                                         groups));
L
liym27 已提交
243 244
    groups = 1;
#endif
245 246 247
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
248 249
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
250 251 252 253 254 255 256 257 258 259 260 261

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
262 263 264

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
265
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo{};

    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
    algo = search::Find<T>(args, exhaustive_search, false, 0, ctx);
    workspace_size = search::GetWorkspaceSize(args, algo);

    // ------------------- cudnn conv forward ---------------------
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
280 281 282 283 284 285 286
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
287 288 289 290
          },
          workspace_size);
    }

291
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      "It must use CUDAPlace.");
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
    if (exhaustive_search && deterministic) {
      PADDLE_THROW(
          "Can't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

334 335 336 337 338 339 340 341 342
    auto dtype = platform::CudnnDataType<T>::type;
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
343 344 345 346
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
347 348
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
349

350 351 352
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
      }
    } else {
368 369
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
370 371 372 373 374
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
393 394
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
395
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
396
    framework::DDim in_data_dims;
397 398 399 400 401 402 403 404 405 406
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
407 408 409 410 411 412 413
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
414
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
415 416 417 418 419 420 421 422 423 424
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
425 426 427 428 429 430
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
431 432 433 434

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
435 436 437 438 439 440 441 442 443 444 445 446 447 448
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
471
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
472 473 474 475
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
476
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
          PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
501
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
502 503 504 505 506
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
507
                   &transformed_filter_channel,
L
liym27 已提交
508 509 510 511 512
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
                   dilations};
    ConvArgs args2{&transformed_input,
513
                   &transformed_filter_grad_channel,
L
liym27 已提交
514 515 516 517 518 519
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
                   dilations};

    auto handle = dev_ctx.cudnn_handle();
520 521 522 523 524
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
525 526 527 528 529 530
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
531 532 533 534 535 536 537 538 539 540 541
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
542 543 544

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
545
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
    size_t workspace_size = 0;
    int iwo_groups, c_groups;

#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
565 566 567
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
L
liym27 已提交
568 569 570 571 572 573 574 575 576 577 578
      args1.cdesc.set(dtype, padding_common, strides, dilations, c_groups);

      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
          search1::Find<T>(args1, exhaustive_search, deterministic, 0, ctx);
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
579
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
580
      args2.handle = handle;
581 582 583 584
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
L
liym27 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
      args2.cdesc.set(dtype, padding_common, strides, dilations, c_groups);

      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
          search2::Find<T>(args2, exhaustive_search, deterministic, 1, ctx);
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
    }

    // ------------------- cudnn conv backward data ---------------------
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    if (input_grad) {
      // Because beta is zero, it is unnecessary to reset input_grad.
      for (int i = 0; i < groups; i++) {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
601 602 603 604 605 606 607 608
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
609 610 611 612
            },
            workspace_size);
      }

W
wangchaochaohu 已提交
613 614 615
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
616

W
wangchaochaohu 已提交
617 618 619 620
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
621

W
wangchaochaohu 已提交
622 623
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
624
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
625 626 627
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
628
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
629 630 631
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
632 633
      }

634
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
635 636 637 638 639 640 641 642 643 644
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      for (int i = 0; i < groups; i++) {
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
645 646 647 648 649 650 651 652
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args2.wdesc.desc(),
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
653 654 655
            },
            workspace_size);
      }
656 657 658 659 660

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      "It must use CUDAPlace.");
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
690 691
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
    if (exhaustive_search && deterministic) {
      PADDLE_THROW(
          "Can't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
729
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
745 746 747 748 749 750
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
765 766 767
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
787
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
820 821 822 823 824
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
825 826 827 828 829 830 831 832 833 834 835
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
836
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
837
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
838 839 840 841 842
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
843 844
        } break;
        case 5: {
845
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
846
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
847 848 849 850 851
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
852 853 854 855 856 857 858
        } break;
        default:
          PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
859 860 861
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_group = 1;
    c_group = groups;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{&transformed_ddX,         W,
                   &transformed_ddO_channel, strides,
                   padding_common,           dilations};
    ConvArgs args2{&transformed_X, ddW,      &transformed_ddO_channel, strides,
                   padding_common, dilations};
    ConvArgs args3{&transformed_ddX, dW,       &transformed_dO_channel, strides,
                   padding_common,   dilations};
    ConvArgs args4{&transformed_dX, ddW,      &transformed_dO_channel, strides,
                   padding_common,  dilations};

    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
        args1.cdesc.set(dtype, padding_common, strides, dilations, c_group);

        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, 0, ctx);
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);

        args2.wdesc.set(*ddW, layout, iwo_group);

        args2.odesc.set(transformed_ddO_channel, iwo_group);
        args2.cdesc.set(dtype, padding_common, strides, dilations, c_group);

        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, 0, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_dO_channel, iwo_group);

      args3.cdesc.set(dtype, padding_common, strides, dilations, c_group);

      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
          search3::Find<T>(args3, exhaustive_search, deterministic, 1, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
      args4.cdesc.set(dtype, padding_common, strides, dilations, c_group);

      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
          search4::Find<T>(args4, exhaustive_search, deterministic, 2, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1000 1001 1002 1003 1004 1005 1006 1007
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1008 1009 1010 1011 1012 1013 1014 1015
              },
              workspace_size);
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1016 1017 1018 1019 1020 1021 1022 1023
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
              },
              workspace_size);
        }
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1033
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1034 1035 1036 1037 1038
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1039 1040 1041 1042 1043 1044 1045 1046
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
            },
            workspace_size);
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1057 1058 1059 1060 1061 1062 1063 1064
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1065 1066 1067 1068
            },
            workspace_size);
      }

W
wangchaochaohu 已提交
1069 1070 1071 1072
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1073

W
wangchaochaohu 已提交
1074 1075 1076 1077 1078
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1079
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1080 1081
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1082
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1083 1084
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);