hepler.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
16
from collections import defaultdict
17 18 19 20 21

from paddle.nn import Layer
from paddle.jit import to_static, not_to_static
from paddle.distributed.utils import get_logger
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
22 23
from paddle.fluid.framework import program_guard
from paddle.fluid.dygraph.dygraph_to_static.program_translator import StaticFunction
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

from .utils import to_list


class ProxyLayer(Layer):
    """
    ProxyLayer implements all logic for converting dygraph model into
    static Program IR. Meanwhile, it provides conviential interfaces for
    auto parallel to visit feed/fetch/loss/metric variables.
    """

    def __init__(self, layer, loss_func, metrics):
        super(ProxyLayer, self).__init__()
        # NOTE: All verify logics are finished in Engine.Prepare
        self.inner_layer = layer
        self.loss_func = loss_func
        self.metrics = metrics
        # train / eval / predict
        self.mode = None

        # generated program vars
45 46 47 48 49
        self._input_vars = defaultdict(list)
        self._label_vars = defaultdict(list)
        self._output_vars = defaultdict(list)
        self._loss_vars = defaultdict(list)
        self._metric_vars = defaultdict(list)
50 51 52 53 54 55

    def _train(self, inputs, labels):
        """
        Train process of inner_layer with forward/loss/metric logic.
        """
        # step 1. save feed variables of Program
56 57 58
        mode = 'train'
        self._input_vars[mode] = inputs
        self._label_vars[mode] = labels
59 60

        # step 2. call inner_layer.forward
61
        self._output_vars[mode] = self.inner_layer(*inputs)
62 63 64

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
65
        self._loss_vars[mode] = self.call_loss(new_inputs)
66 67

        # step 4. calculate metrics if needed
68
        self._metric_vars[mode] = self.call_metrics(new_inputs)
69 70 71 72 73 74 75 76 77

    def _eval(self, inputs, labels):
        """
        Evaluate process of inner_layer with forward/loss/metric logic.
        """
        # TODO(dev): we can reuse codes with self._train after making
        # sure if they can.

        # step 1. save feed variables of Program
78 79 80
        mode = 'eval'
        self._input_vars[mode] = inputs
        self._label_vars[mode] = labels
81 82

        # step 2. call inner_layer.forward
83
        self._output_vars[mode] = self.inner_layer(*inputs)
84 85 86

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
87
        self._loss_vars[mode] = self.call_loss(new_inputs)
88 89

        # step 4. calculate metrics if needed
90
        self._metric_vars[mode] = self.call_metrics(new_inputs)
91 92 93 94 95 96

    def _predict(self, inputs):
        """
        Predict process of inner_layer with forward logic.
        """
        # step 1. save feed variables of Program
97 98
        mode = 'predict'
        self._input_vars[mode] = inputs
99 100

        # step 2. call inner_layer.forward
101
        self._output_vars[mode] = self.inner_layer(*inputs)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    @not_to_static
    def _prepare(self, outputs, labels):
        """
        Concat outputs and labels as a single list

        NOTE(dev): We use @not_to_static to avoid AST Analysis.
        """
        return to_list(outputs) + to_list(labels)

    def call_loss(self, inputs):
        """
        Apply Loss Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        res = []
        if self.loss_func is not None:
            res = self.loss_func(*inputs)
        return res

    def call_metrics(self, inputs):
        """
        Apply Metrics Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        outs = []
        for metric in self.metrics:
            outs.extend(metric.compute(*inputs))

        return outs

    def set_mode(self, mode):
        self.mode = mode
        self.training = mode == 'train'

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def clone(self):
        return ProxyLayer(self.inner_layer, self.loss_func, self.metrics)

    @property
    def input_vars(self):
        return self._input_vars[self.mode]

    @property
    def label_vars(self):
        return self._label_vars[self.mode]

    @property
    def output_vars(self):
        return self._output_vars[self.mode]

    @property
    def loss_vars(self):
        return self._loss_vars[self.mode]

    @property
    def metric_vars(self):
        return self._metric_vars[self.mode]

168 169 170

class BuildInfo:

171 172 173 174 175 176 177 178
    def __init__(self):
        self.clear()

    def has_cache(self, mode, update=False):
        is_cache = self.states[mode]
        if update:
            self.cache(mode)
        return is_cache
179

180 181 182 183 184
    def cache(self, mode):
        self.states[mode] = True

    def clear(self):
        self.states = defaultdict(bool)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202


class ProgramHelper(object):
    """
    A Helper class for Engine to provides different Program IR according specified 'mode'.
    """

    def __init__(self, layer, loss_func, metrics, inputs_spec, labels_spec):
        # original model config information
        # TODO(Aurelius84): Implenet append_backward and optimizer in ProxyLayer
        # after distribute engine satisify basic condition.
        self.proxy_layer = ProxyLayer(layer, loss_func, metrics)
        self.inputs_spec = inputs_spec
        self.labels_spec = labels_spec

        self.build_info = BuildInfo()
        self._logger = get_logger(logging.INFO)

203 204 205 206 207 208 209
    def reset(self):
        """
        Reset all state of current Object.
        """
        self.build_info.clear()
        self.proxy_layer = self.proxy_layer.clone()

210 211 212 213 214
    def build_program(self, mode):
        """
        Convert dygraph model into static Program IR.
        """
        assert mode in ['train', 'eval', 'predict']
215
        self.proxy_layer.set_mode(mode)
216
        # skip if we has already built program.
217
        if self.build_info.has_cache(mode, True):
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            self._logger.info(
                "Already build program with mode = %s, use cached program." %
                mode)
            return

        self._logger.info("start to build program for mode = %s." % mode)
        input_spec = [self.inputs_spec, self.labels_spec
                      ] if mode != 'predict' else [self.inputs_spec]
        static_func = to_static(self.static_func(), input_spec=input_spec)

        func_name = '_' + mode
        setattr(self.proxy_layer, func_name, static_func)

        # NOTE(dev): Because @to_static is a Lazy mechanism, so we explicitly call this to trigger
        # generating Program IR immediately.
        getattr(self.proxy_layer, func_name).concrete_program

235 236
        self._build_startup_program()

237 238 239 240 241 242 243 244 245 246 247 248 249
    def _build_startup_program(self):
        """
        Create and Sync parameters into startup program.
        """
        for param in self.concrete_program.parameters:
            Parameter(name=param.name,
                      desc=param,
                      type=param.type,
                      shape=param.shape,
                      dtype=param.dtype,
                      stop_gradient=param.stop_gradient,
                      block=self.startup_program.global_block())

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def apply_optimizer(self, optimizer):
        """
        Append backward and generate optimizer operations.
        """
        self._verify_optimizer(optimizer)
        self._logger.info("start to apply optimizer: %s ",
                          type(optimizer).__name__)
        # clear optimizer parameters
        original_params = optimizer._parameter_list
        optimizer._parameter_list = None
        with program_guard(self.main_program, self.startup_program):
            res = optimizer.minimize(self.loss_vars[0])

        # restore optimizer parameters
        optimizer._parameter_list = original_params
        return res

    def _verify_optimizer(self, optimizer):
        assert optimizer is not None
        assert hasattr(optimizer,
                       "minimize"), "Optimizer must have minimize() method."
        assert self.proxy_layer.mode == 'train', "Required mode == 'train', but received '%s'" % self.proxy_layer.mode
        assert len(
            self.loss_vars
        ) == 1, "Required len(loss_vars) == 1, but received len(loss_vars) = %s" % len(
            self.loss_vars)

    def to(self, mode):
        """
        Switch underly proxy layer mode into target mode.
        """
        assert mode in ['train', 'eval', 'predict']
        func = getattr(self.proxy_layer, '_' + mode)
        assert isinstance(
            func, StaticFunction), "Please call build_program(mode) firstly."
        self.proxy_layer.set_mode(mode)

287 288
    def static_func(self):
        """
289
        Return StaticFunction instance with underly target mode.
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        """
        assert self.proxy_layer.mode in [
            'train', 'eval', 'predict'
        ], "Please call build_program(mode) firstly."
        func_name = '_' + self.proxy_layer.mode
        return getattr(self.proxy_layer, func_name)

    @property
    def concrete_program(self):
        return self.static_func().concrete_program

    @property
    def main_program(self):
        return self.concrete_program.main_program

    @property
    def startup_program(self):
        return self.concrete_program.startup_program

    @property
    def input_vars(self):
        return to_list(self.proxy_layer.input_vars)

    @property
    def output_vars(self):
        return to_list(self.proxy_layer.output_vars)

    @property
    def label_vars(self):
        return to_list(self.proxy_layer.label_vars)

    @property
    def loss_vars(self):
        return to_list(self.proxy_layer.loss_vars)

    @property
    def metric_vars(self):
        return to_list(self.proxy_layer.metric_vars)