hepler.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

from paddle.nn import Layer
from paddle.jit import to_static, not_to_static
from paddle.distributed.utils import get_logger
from paddle.fluid.framework import Operator, Parameter, _non_static_mode

from .utils import to_list


class ProxyLayer(Layer):
    """
    ProxyLayer implements all logic for converting dygraph model into
    static Program IR. Meanwhile, it provides conviential interfaces for
    auto parallel to visit feed/fetch/loss/metric variables.
    """

    def __init__(self, layer, loss_func, metrics):
        super(ProxyLayer, self).__init__()
        # NOTE: All verify logics are finished in Engine.Prepare
        self.inner_layer = layer
        self.loss_func = loss_func
        self.metrics = metrics
        # train / eval / predict
        self.mode = None

        # generated program vars
        self.input_vars = []
        self.label_vars = []
        self.output_vars = []
        self.loss_vars = []
        self.metric_vars = []

    def _train(self, inputs, labels):
        """
        Train process of inner_layer with forward/loss/metric logic.
        """
        # step 1. save feed variables of Program
        self.input_vars = inputs
        self.label_vars = labels

        # step 2. call inner_layer.forward
        self.output_vars = self.inner_layer(*inputs)

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
        self.loss_vars = self.call_loss(new_inputs)

        # step 4. calculate metrics if needed
        self.metric_vars = self.call_metrics(new_inputs)

    def _eval(self, inputs, labels):
        """
        Evaluate process of inner_layer with forward/loss/metric logic.
        """
        # TODO(dev): we can reuse codes with self._train after making
        # sure if they can.

        # step 1. save feed variables of Program
        self.input_vars = inputs
        self.label_vars = labels

        # step 2. call inner_layer.forward
        self.output_vars = self.inner_layer(*inputs)

        # step 3. calculate loss if needed
        new_inputs = self._prepare(self.output_vars, labels)
        self.loss_vars = self.call_loss(new_inputs)

        # step 4. calculate metrics if needed
        self.metric_vars = self.call_metrics(new_inputs)

    def _predict(self, inputs):
        """
        Predict process of inner_layer with forward logic.
        """
        # step 1. save feed variables of Program
        self.input_vars = inputs

        # step 2. call inner_layer.forward
        self.output_vars = self.inner_layer(*inputs)

    @not_to_static
    def _prepare(self, outputs, labels):
        """
        Concat outputs and labels as a single list

        NOTE(dev): We use @not_to_static to avoid AST Analysis.
        """
        return to_list(outputs) + to_list(labels)

    def call_loss(self, inputs):
        """
        Apply Loss Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        res = []
        if self.loss_func is not None:
            res = self.loss_func(*inputs)
        return res

    def call_metrics(self, inputs):
        """
        Apply Metrics Function on outputs and labels.

        Args:
            inputs: List[Variable]

        Returns: List[Variable]
        """
        outs = []
        for metric in self.metrics:
            outs.extend(metric.compute(*inputs))

        return outs

    def set_mode(self, mode):
        self.mode = mode
        self.training = mode == 'train'


class BuildInfo:

    def __init__(self, mode=None, state=False):
        self.mode = mode
        self.state = state

    def has_cache(self, mode):
        return self.mode == mode and self.state is True


class ProgramHelper(object):
    """
    A Helper class for Engine to provides different Program IR according specified 'mode'.
    """

    def __init__(self, layer, loss_func, metrics, inputs_spec, labels_spec):
        # original model config information
        # TODO(Aurelius84): Implenet append_backward and optimizer in ProxyLayer
        # after distribute engine satisify basic condition.
        self.proxy_layer = ProxyLayer(layer, loss_func, metrics)
        self.inputs_spec = inputs_spec
        self.labels_spec = labels_spec

        self.build_info = BuildInfo()
        self._logger = get_logger(logging.INFO)

    def build_program(self, mode):
        """
        Convert dygraph model into static Program IR.
        """
        assert mode in ['train', 'eval', 'predict']
        # skip if we has already built program.
        if self.build_info.has_cache(mode):
            self._logger.info(
                "Already build program with mode = %s, use cached program." %
                mode)
            return

        self._logger.info("start to build program for mode = %s." % mode)
        self.proxy_layer.mode = mode
        input_spec = [self.inputs_spec, self.labels_spec
                      ] if mode != 'predict' else [self.inputs_spec]
        static_func = to_static(self.static_func(), input_spec=input_spec)

        func_name = '_' + mode
        setattr(self.proxy_layer, func_name, static_func)

        # NOTE(dev): Because @to_static is a Lazy mechanism, so we explicitly call this to trigger
        # generating Program IR immediately.
        getattr(self.proxy_layer, func_name).concrete_program

    def _build_startup_program(self):
        """
        Create and Sync parameters into startup program.
        """
        for param in self.concrete_program.parameters:
            Parameter(name=param.name,
                      desc=param,
                      type=param.type,
                      shape=param.shape,
                      dtype=param.dtype,
                      stop_gradient=param.stop_gradient,
                      block=self.startup_program.global_block())

    def static_func(self):
        """
        Return target mode function.
        """
        assert self.proxy_layer.mode in [
            'train', 'eval', 'predict'
        ], "Please call build_program(mode) firstly."
        func_name = '_' + self.proxy_layer.mode
        return getattr(self.proxy_layer, func_name)

    @property
    def concrete_program(self):
        return self.static_func().concrete_program

    @property
    def main_program(self):
        return self.concrete_program.main_program

    @property
    def startup_program(self):
        return self.concrete_program.startup_program

    @property
    def input_vars(self):
        return to_list(self.proxy_layer.input_vars)

    @property
    def output_vars(self):
        return to_list(self.proxy_layer.output_vars)

    @property
    def label_vars(self):
        return to_list(self.proxy_layer.label_vars)

    @property
    def loss_vars(self):
        return to_list(self.proxy_layer.loss_vars)

    @property
    def metric_vars(self):
        return to_list(self.proxy_layer.metric_vars)