recurrent_op_utils.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rnn/recurrent_op_utils.h"

namespace paddle {
namespace operators {
namespace rnn {

D
dongzhihong 已提交
21 22 23
namespace f = paddle::framework;

using Tensor = framework::Tensor;
24 25

void SegmentInputs(const std::vector<Scope*>& step_scopes,
S
superjom 已提交
26 27
                   const std::vector<std::string>& inlinks,
                   const size_t seq_len, bool infer_shape_mode) {
28 29
  PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
  for (size_t i = 0; i < inlinks.size(); ++i) {
S
superjom 已提交
30
    auto input_var = step_scopes[0]->FindVar(inlinks[i]);
31
    PADDLE_ENFORCE(input_var != nullptr, "input link [%s] is not in scope.",
S
superjom 已提交
32
                   inlinks[i]);
33 34

    Tensor* input = input_var->GetMutable<Tensor>();
D
dongzhihong 已提交
35
    f::DDim dims = input->dims();
36 37
    PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
                   "all the inlinks must have same length");
D
dongzhihong 已提交
38
    f::DDim step_dims = slice_ddim(dims, 1, dims.size());
39 40
    for (size_t j = 0; j < seq_len; j++) {
      Tensor* step_input =
S
superjom 已提交
41
          step_scopes[j]->NewVar(inlinks[i])->GetMutable<Tensor>();
42 43 44 45 46 47 48 49 50
      if (!infer_shape_mode) {
        *step_input = input->Slice<float>(j, j + 1);
      }
      step_input->Resize(step_dims);
    }
  }
}

void ConcatOutputs(const std::vector<Scope*>& step_scopes,
S
superjom 已提交
51 52
                   const std::vector<std::string>& outlinks,
                   const size_t seq_len, bool infer_shape_mode) {
53
  for (size_t i = 0; i < outlinks.size(); i++) {
S
superjom 已提交
54
    auto output_var = step_scopes[0]->FindVar(outlinks[i]);
55
    PADDLE_ENFORCE(output_var != nullptr, "output link [%s] is not in scope.",
S
superjom 已提交
56
                   outlinks[i]);
57
    Tensor* output = output_var->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
58

59
    if (infer_shape_mode) {
S
superjom 已提交
60 61
      auto step_scope_var = step_scopes[0]->FindVar(outlinks[i]);
      PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope", outlinks[i]);
D
dongzhihong 已提交
62
      f::DDim step_dims = step_scope_var->template GetMutable<Tensor>()->dims();
Q
qijun 已提交
63
      std::vector<int64_t> dims_vec = vectorize(step_dims);
64
      dims_vec.insert(dims_vec.begin(), seq_len);
D
dongzhihong 已提交
65
      output->Resize(f::make_ddim(dims_vec));
66 67 68 69
    } else {
      output->mutable_data<float>(platform::CPUPlace());
      for (size_t j = 0; j < seq_len; j++) {
        Tensor* step_output =
S
superjom 已提交
70
            step_scopes[j]->FindVar(outlinks[i])->GetMutable<Tensor>();
71 72 73 74 75 76 77 78 79 80 81 82 83
        // TODO(luotao02) data type and platform::DeviceContext() should set
        // correctly
        (output->Slice<float>(j, j + 1))
            .CopyFrom<float>(*step_output, platform::CPUPlace());
      }
    }
  }
}

void LinkMemories(const std::vector<Scope*>& scopes,
                  const std::vector<rnn::MemoryAttr>& memories,
                  const size_t step_id, const int offset,
                  bool infer_shape_mode) {
Y
Yan Chunwei 已提交
84 85 86 87 88 89 90 91 92
  PADDLE_ENFORCE_LT(step_id, scopes.size(),
                    "step [%d] is out of range of step scopes' size [%d]",
                    step_id, scopes.size());
  PADDLE_ENFORCE_GE(static_cast<int>(step_id) + offset, 0,
                    "offset [%d] must be large than -[%d]", offset, step_id);
  PADDLE_ENFORCE_LT(
      step_id + offset, scopes.size(),
      "offset [%d] is out of range, it must be less than (%d - %d)", offset,
      scopes.size(), step_id);
93 94 95 96 97 98 99 100 101 102 103 104 105 106
  auto scope = scopes[step_id];
  auto linked_scope = scopes[step_id + offset];
  for (auto& attr : memories) {
    auto mem = scope->FindVar(attr.pre_var)->GetMutable<Tensor>();
    auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>();
    if (infer_shape_mode) {
      mem->Resize(linked_mem->dims());
    } else {
      mem->ShareDataWith<float>(*linked_mem);
    }
  }
}

void InitArgument(const ArgumentName& name, Argument* arg,
D
dongzhihong 已提交
107
                  const framework::OperatorBase& op) {
108 109
  arg->step_scopes = op.Output(name.step_scopes);

S
superjom 已提交
110
  arg->inlinks = op.Inputs(name.inlinks);
111

S
superjom 已提交
112
  arg->outlinks = op.Outputs(name.outlinks);
113 114 115 116

  auto boot_memories = op.Inputs(name.boot_memories);

  // attributes
Y
Yu Yang 已提交
117 118
  auto memories = op.Attr<std::vector<std::string>>(name.memories);
  auto pre_memories = op.Attr<std::vector<std::string>>(name.pre_memories);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  PADDLE_ENFORCE(memories.size() == boot_memories.size(),
                 "the size of memories, boot_memories don't match:%d,%d",
                 memories.size(), boot_memories.size());
  PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(),
                 "the size of pre_memories, boot_memories don't match:%d,%d",
                 pre_memories.size(), boot_memories.size());
  PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set");

  for (size_t i = 0; i < memories.size(); ++i) {
    rnn::MemoryAttr mem_attr;
    mem_attr.var = memories[i];
    mem_attr.pre_var = pre_memories[i];
    mem_attr.boot_var = boot_memories[i];
    (arg->memories).push_back(mem_attr);
  }
}

}  // namespace rnn
}  // namespace operators
}  // namespace paddle