varbase_patch_methods.py 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22 23
from .. import framework
from .. import core
24
from .. import unique_name
25
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, _in_eager_mode, EagerParamBase
26
from .base import switch_to_static_graph
27
from .math_op_patch import monkey_patch_math_varbase
28
from .parallel import scale_loss
29
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
30
import paddle.utils.deprecated as deprecated
H
hong 已提交
31
from paddle import _C_ops
32 33


34 35 36
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
37
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
38 39 40
    """

    def __init__(self, tensor, hook_id):
41
        self._tensor = tensor if core._in_eager_mode() else weakref.ref(tensor)
42 43 44 45 46 47 48 49 50
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
51
        tensor = self._tensor if core._in_eager_mode() else self._tensor()
52 53 54 55 56 57 58 59 60 61 62
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


63 64 65
_already_patch_repr = False


66
def monkey_patch_varbase():
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
94

95
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
96 97
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
        attr_not_need_keys = ['grad', 'T']
98
        if isinstance(self, (ParamBase, EagerParamBase)):
99 100
            attr_kwargs = self.__dict__.copy()
        else:
101 102
            attr_names = []
            for name in dir(self):
103 104 105 106
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
107 108 109 110 111 112 113 114
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

115
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
116
            del attr_kwargs['persistable']
117 118
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
119 120 121 122 123
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

124 125 126 127 128
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
129
            **This API is ONLY available in Dygraph mode**
130 131 132 133 134 135 136 137 138 139 140

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
141
                from paddle.fluid.dygraph import Linear
142 143
                import numpy as np

144
                data = np.ones([3, 1024], dtype='float32')
145
                with fluid.dygraph.guard():
146
                    linear = fluid.dygraph.Linear(1024, 4)
147
                    t = to_variable(data)
148
                    linear(t)  # call with default weight
149
                    custom_weight = np.random.randn(1024, 4).astype("float32")
150 151
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
152 153

        """
154
        if core._in_eager_mode():
155
            base_tensor = core.eager.Tensor
156 157 158
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
159 160 161 162 163 164 165 166 167 168 169 170 171
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
            value_np = value
172
            if isinstance(value, base_tensor):
173
                value_np = value.numpy()
174

175
            self_tensor_np = self.numpy()
176

177 178 179
            assert self_tensor_np.shape == value_np.shape, \
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                    self.name, self_tensor_np.shape, value_np.shape)
180

181 182 183
            assert self_tensor_np.dtype == value_np.dtype, \
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    self.name, self_tensor_np.dtype, value_np.dtype)
184

185
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
186
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
187
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
188
            # this Interface behavior will be unifed in the future.
189 190
            self.value().get_tensor().set(value_np,
                                          framework._current_expected_place())
191 192

    @framework.dygraph_only
193
    def backward(self, grad_tensor=None, retain_graph=False):
194
        """
195
        Run backward of current Graph which starts from current Tensor.
196

197 198 199 200
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

201
        Args:
202 203 204 205 206
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

207
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
208 209 210
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
211 212 213 214 215 216
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

217
                import paddle
218 219 220 221 222 223 224 225 226 227 228 229 230 231
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
232

233 234 235 236 237 238 239 240 241 242 243
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

244 245
        """
        if framework.in_dygraph_mode():
246
            if grad_tensor is not None:
247
                if core._in_eager_mode():
248
                    assert isinstance(
249 250
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
251 252 253 254
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
255 256 257 258
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

259
            if core._in_eager_mode():
260 261 262 263
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
K
kuizhiqing 已提交
264
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu():
265
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
266
                scaled_loss = scale_loss(self)
267
                if core._in_eager_mode():
268 269 270 271 272 273
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
274
            else:
275
                if core._in_eager_mode():
276 277 278 279 280
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
281 282
        else:
            raise ValueError(
283
                "Variable.backward() is only available in DyGraph mode")
284 285

    @framework.dygraph_only
286 287
    @deprecated(
        since="2.1.0",
288 289
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
290
    )
291 292
    def gradient(self):
        """
293 294 295 296
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

297
        Get the Gradient of Current Tensor.
298 299

        Returns:
300
            ndarray: Numpy value of the gradient of current Tensor
301 302 303 304

        Examples:
            .. code-block:: python

305
                import paddle
306

307 308 309
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
310
                print("grad of x: {}".format(x.gradient()))
311
                # [500.]
312 313

        """
314
        if core._in_eager_mode():
315
            if self.grad is None:
316 317 318 319 320 321
                return None
            # TODO(wanghuancoder) support SELECTED_ROWS
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
322

323 324 325 326
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
327
                    np.array(new_ivar.value().get_selected_rows().rows()))
328 329
            else:
                return np.array(new_ivar.value().get_tensor())
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
427 428
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
429 430 431

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
432
                size_dtype = core.size_of_dtype(dtype)
433 434 435 436 437
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
438
                gpu_memory_available = core.gpu_memory_available()
439 440 441 442 443 444 445 446 447 448 449 450 451
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
452 453 454
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
455 456 457 458
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
459 460 461 462
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
463 464 465 466 467 468 469 470 471 472 473 474

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

475 476 477
    @property
    def grad(self):
        """
478 479 480 481 482 483 484 485 486 487 488 489 490
        .. warning::
          This API will return the tensor value of the gradient. If you want 
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
491

492 493 494 495 496 497 498
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
499 500 501 502
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
503
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
504 505 506
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
507
        warnings.warn(warning_msg)
508
        return self._grad_ivar()
509

510 511 512 513 514 515
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

516 517
    def item(self, *args):
        """
518 519
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a 
        single-element Tensor.
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
        
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

579 580
    def __str__(self):
        """
581
        Convert a VarBase object to a readable string.
582

583
        Returns(str): A readable string.
584 585 586 587

        Examples:
            .. code-block:: python

588
                import paddle
589
                x = paddle.rand([2, 5])
590
                print(x)
591 592 593 594
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
595
        """
596
        if core._in_eager_mode():
597 598
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
599 600 601
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
628
        if core._in_eager_mode():
629
            new_varbase = core.eager.Tensor()
630 631
        else:
            new_varbase = core.VarBase()
632 633 634 635 636
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

637 638 639
    @property
    def block(self):
        return framework.default_main_program().global_block()
640

641 642 643
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
644 645 646 647 648 649 650
        if core._in_eager_mode():
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
651 652 653 654

    def __bool__(self):
        return self.__nonzero__()

655
    def __array__(self, dtype=None):
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        """
        Returns a numpy array shows the value of current Tensor.
        
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
680

W
WeiXin 已提交
681
    def contain_tensor(item):
682
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
683 684 685 686 687 688 689 690 691
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
692 693 694
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
695 696 697
                    return True
        return False

698
    def __getitem__(self, item):
W
WeiXin 已提交
699 700 701 702 703 704
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
705 706 707
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
708
                return True
709

W
WeiXin 已提交
710 711 712 713 714 715 716 717
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
718 719 720 721 722 723 724 725
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
726
    def __setitem__(self, item, value):
727 728 729
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
730

731 732 733 734 735 736 737 738
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
761 762
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
763 764 765
            return _setitem_impl_(self, item, value)

        else:
766
            # Call c++ func __setitem_varbase__ to speedup.
W
WeiXin 已提交
767 768
            return self.__setitem_varbase__(item, value)

769 770
    @framework.dygraph_only
    def _grad_ivar(self):
771 772 773 774
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
775

776 777 778 779 780 781 782 783 784 785
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
H
hong 已提交
786
        return _C_ops.assign(self)
787

788 789 790 791
    @framework.dygraph_only
    def value(self):
        return self

792 793 794
    if core._in_eager_mode() and not hasattr(core, "eager"):
        return

795 796
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
797
        ("_to_static_var", _to_static_var), ("set_value", set_value),
798
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
799 800 801 802
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
803
        ("__getitem__", __getitem__), ("item", item),
804
        ("__setitem__", __setitem__), ("_to", _to)):
805
        if core._in_eager_mode():
806
            setattr(core.eager.Tensor, method_name, method)
807
        else:
808 809 810
            setattr(core.VarBase, method_name, method)

    if core._in_eager_mode():
811 812 813 814
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
833

834 835
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
836

837 838
    # patch math methods for varbase
    monkey_patch_math_varbase()