matmul_mkldnn_op.cc 25.5 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16 17 18

using dnnl::memory;
using dnnl::primitive;
19 20 21 22 23 24 25 26 27 28
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::framework::vectorize;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
29

30 31
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
32
static Tensor FoldOuterDims(const Tensor& input) {
33 34 35 36 37 38 39 40 41 42 43 44
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
45 46 47
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
48 49 50 51
  if (input_dims.size() != 3) {
    return *input;
  }

52
  Tensor output;
53 54
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

55
  auto output_dims = vectorize(output.dims());
56

57 58 59 60 61 62 63
  memory::data_type input_type =
      paddle::framework::ToMKLDNNDataType(input->type());
  std::string key = paddle::platform::CreateKey(
      dev_ctx, input_dims, input->format(), input->format(), input_type);
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
      output_dims, input->type(), input_type, dev_ctx, dev_ctx.GetEngine(),
      key);
64 65

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
66 67
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
68 69 70 71 72
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

73 74
  paddle::platform::RecordEvent record_reorder(
      "int_reorder", paddle::platform::EventRole::kUniqueOp);
75

76
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
77 78 79 80 81 82 83 84
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
85 86
class MatMulMKLDNNHandler
    : public paddle::platform::MKLDNNHandlerT<T, dnnl::matmul> {
87 88
 public:
  MatMulMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
89 90 91 92 93
                      const mkldnn::engine engine,
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
                      float scale, const std::string& uniq_name)
      : paddle::platform::MKLDNNHandlerT<T, dnnl::matmul>(
94
            dev_ctx, engine, cpu_place,
95 96
            paddle::platform::CreateKey(dev_ctx, vectorize(x->dims()),
                                        uniq_name)) {
97
    if (!this->isCached()) {
98 99 100 101
      auto mat_dim_x = paddle::operators::math::CreateMatrixDescriptor(
          x->dims(), 0, trans_x);
      auto mat_dim_y = paddle::operators::math::CreateMatrixDescriptor(
          y->dims(), 0, trans_y);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

      memory::dim x_bs = mat_dim_x.batch_size_;
      memory::dim y_bs = mat_dim_y.batch_size_;

      memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
      const memory::dim M = mat_dim_x.height_;
      const memory::dim N = mat_dim_y.width_;
      const memory::dim K = mat_dim_x.width_;

      memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
      memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
      memory::dims out_dims = {out_bs, M, N};

      memory::dims x_strides =
          !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

      memory::dims y_strides =
          !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
      memory::dims out_strides = memory::dims{M * N, N, 1};

      auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
      auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
      auto out_md = memory::desc(out_dims, MKLDNNGetDataType<T>(), out_strides);

      dnnl::primitive_attr attrs;
      if (scale != 1.0f) attrs.set_output_scales(0, {scale});

      this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
    }
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<T>(input_data),
                                            "@weights_mem_p");
  }
};

141 142 143 144 145
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

146 147
template <typename T>
constexpr bool IsBfloat16() {
148
  return std::is_same<T, paddle::platform::bfloat16>::value;
149 150
}

151 152
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
153 154 155
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : paddle::framework::make_ddim({1, x_dim[0]});
156 157 158 159
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
160 161 162
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : paddle::framework::make_ddim({y_dim[0], 1});
163 164
}

165 166 167 168 169 170 171
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
172
    Tensor* x, const paddle::operators::math::MatDescriptor& descriptor) {
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
200 201
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
202 203
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
204 205 206 207
  auto mat_dim_x =
      paddle::operators::math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y =
      paddle::operators::math::CreateMatrixDescriptor(y_dim, 0, trans_y);
208 209 210 211 212 213 214 215 216 217 218
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
    if (IsInitialized()) {
      UpdateDataPointers(ctx);
      Execute();
      SetOutputFormat(ctx);
      return;
    }
    CreateMemories(ctx);
    CreatePrimitive(ctx);
    Execute();
    SetOutputFormat(ctx);
    SetInitialized();
  }

 private:
  struct MatMulDims {
239 240
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
241 242 243
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
244
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
245 246 247 248 249 250 251 252 253 254
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

255 256 257 258 259 260 261
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
262
                      paddle::platform::errors::InvalidArgument(
263 264
                          "In an axis array, elements must be unique."));

265 266 267 268 269 270 271
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
272 273

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
274
                      paddle::platform::errors::InvalidArgument(
275 276 277 278 279 280 281 282 283
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

284 285
  std::pair<paddle::operators::math::MatDescriptor, memory::dims>
  GetInputDimsAndStrides(const ExecutionContext& ctx, std::string input_name) {
286 287 288 289 290 291 292 293 294 295
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
296 297 298 299
    paddle::operators::math::MatDescriptor mat_dim =
        paddle::operators::math::CreateMatrixDescriptor(
            MatrixDimsFromVector(new_dims), 0,
            ctx.Attr<bool>("transpose_" + input_name));
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

324 325 326 327 328 329 330 331 332 333
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
334 335 336
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
    }
337 338
  }

339
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
340
    paddle::operators::math::MatDescriptor mat_dim_x;
341 342
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
343
    paddle::operators::math::MatDescriptor mat_dim_y;
344 345
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
346

347 348
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
349
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
350
                      paddle::platform::errors::InvalidArgument(
351 352 353
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

354
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
355 356 357
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
358 359

    batch_size_ = 1;
360
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
361 362 363
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
364 365 366
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
367
    }
368 369 370
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
371

372 373 374
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
375 376

    // Translate transA and transB
377 378 379 380 381 382
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
383 384
    memory::dims out_strides = memory::dims{M * N, N, 1};

385
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
386 387

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
388 389 390 391 392
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);

393 394 395 396
    x_mem_ = CreateMemory<XT>(matmul_dims.x_dims, matmul_dims.x_strides,
                              ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ = CreateMemory<YT>(matmul_dims.y_dims, matmul_dims.y_strides,
                              ctx.Input<Tensor>("Y")->data<YT>());
397
    out_mem_ = CreateMemory<OT>(
398
        matmul_dims.out_dims, matmul_dims.out_strides,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

  void Execute() {
    dnnl::stream stream(engine_);
427 428 429 430

    void* x_ptr = x_mem_.get_data_handle();
    void* y_ptr = y_mem_.get_data_handle();
    void* out_ptr = out_mem_.get_data_handle();
431
    for (uint16_t i = 0; i < batch_size_; i++) {
432 433 434 435 436 437 438 439
      x_mem_.set_data_handle(x_ptr);
      y_mem_.set_data_handle(y_ptr);
      out_mem_.set_data_handle(out_ptr);
      matmul_prim_.execute(stream, {
                                       {MKLDNN_ARG_SRC, x_mem_},
                                       {MKLDNN_ARG_WEIGHTS, y_mem_},
                                       {MKLDNN_ARG_DST, out_mem_},
                                   });
440 441 442
      x_ptr = static_cast<char*>(x_ptr) + x_offset_;
      y_ptr = static_cast<char*>(y_ptr) + y_offset_;
      out_ptr = static_cast<char*>(out_ptr) + out_offset_;
443
    }
444 445 446 447
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
448
    using paddle::platform::MKLDNNFormatForSize;
449 450
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
451
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  void UpdateDataPointers(const ExecutionContext& ctx) {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    x_mem_.set_data_handle(to_void_cast(x->data<XT>()));
    y_mem_.set_data_handle(to_void_cast(y->data<YT>()));
    out_mem_.set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
471 472 473 474 475 476
  struct memory_offsets {
    size_t x_offset;
    size_t y_offset;
    size_t out_offset;
  };

477 478 479 480 481
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
482 483 484 485
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
486 487 488 489 490 491 492 493
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
494
  const auto batch_size = ctx.Input<Tensor>("X")->dims()[0];
495 496
  std::string key = paddle::platform::CreateKey(dev_ctx, batch_size, out_name);
  key = paddle::platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
513
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
514 515
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
516
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
517
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
518 519 520
  } else if (is_bfloat16) {
    GetPrimitiveFactory<XT, YT, paddle::platform::bfloat16>(ctx)
        ->CreateAndExecute(ctx);
521 522 523 524 525 526 527 528
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
529
class DNNLMatMulKernel : public paddle::framework::OpKernel<T> {
530
 public:
531
  void Compute(const ExecutionContext& ctx) const override {
532
    if (ctx.HasAttr("head_number")) {
533 534
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
535
          paddle::platform::errors::Unimplemented(
536 537 538
              "DNNL matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
539
    }
540
    MKLDNNDeviceContext::tls().log_lib_version();
541 542 543
    ExecuteMatMul<T, T>(ctx);
  }
};
544

545 546 547 548 549
}  // anonymous namespace

namespace paddle {
namespace operators {

550
template <typename T>
551 552 553 554 555 556 557 558
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
            "DNNL matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
559
  }
560 561
  RunKernel(ctx);
}
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
    const mkldnn::engine& engine, Tensor* x, bool trans_x,
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
    Tensor* out, int execution_number) const {
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
583

584
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  MatMulMKLDNNHandler<T> handler(dev_ctx, engine, ctx.GetPlace(), &x_combined,
                                 trans_x, &y_combined, trans_y, out, alpha,
                                 ctx.InputName(framework::GradVarName("Out")) +
                                     std::to_string(execution_number));

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
635
    }
636
  }
637

638 639 640 641 642
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
643
    }
644
  }
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
                            true, false, dx, 0);
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
                            true, false, dy, 1);
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
                            &dout, true, false, dx, 0);
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
                            &dout, false, true, dy, 1);
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
                            &y, false, true, dx, 0);
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
                            false, true, dy, 1);
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
                            &y, true, false, dx, 0);
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
                            false, true, dy, 1);
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
672
    }
673 674 675 676 677
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
678 679
    }
  }
680 681 682 683
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
684

685 686 687 688 689
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
690 691 692
                   DNNLMatMulKernel<float>,
                   DNNLMatMulKernel<paddle::platform::bfloat16>,
                   DNNLMatMulKernel<int8_t>, DNNLMatMulKernel<uint8_t>);
693 694 695 696

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);